

UNIVERSIDAD CATÓLICA DE CUENCA

Comunidad Educativa al Servicio del Pueblo

UNIDAD ACADÉMICA DE INGENIERÍA, INDUSTRIA Y CONSTRUCCIÓN

CARRERA DE INGENIERÍA CIVIL

EVALUACIÓN DE LOS PROCESOS DE POTABILIZACIÓN DE AGUA APLICADOS EN LA PTAP DE CACHIYACU DEL SISTEMA MUNICIPAL DE LA CIUDAD DE PAUTE

TRABAJO DE TITULACIÓN

PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO CIVIL

AUTOR: DANIEL MARCELO ROCANO PORTOVIEJO
DIRECTOR: ING. SANTIAGO AURELIO OCHOA GARCÍA PhD.
CUENCA- ECUADOR

2022

DIOS, PATRIA, CULTURA Y DESARROLLO

Declaratoria de Autoría y Responsabilidad

Daniel Marcelo Rocano Portoviejo portador de la cédula de ciudadanía N.º 0105130751 Declaro ser el autor de la obra: "EVALUACIÓN DE LOS PROCESOS DE POTABILIZACIÓN DE AGUA APLICADOS EN LA PTAP DE CACHIYACU DEL SISTEMA MUNICIPAL DE LA CIUDAD DE PAUTE", sobre la cual me hago responsable sobre las opiniones, versiones e ideas expresadas. Declaro que la misma ha sido elaborada respetando los derechos de propiedad intelectual de terceros y eximo a la Universidad Católica de Cuenca sobre cualquier reclamación que pudiera existir al respecto. Declaro finalmente que mi obra ha sido realizada cumpliendo con todos los requisitos legales, éticos y bioéticos de investigación, que la misma no incumple con la normativa nacional e internacional en el área específica de investigación, sobre la que también me responsabilizo y eximo a la Universidad Católica de Cuenca de toda reclamación al respecto.

Cuenca, 11 de agosto de 2022

Daniel Marcelo Rocano Portoviejo

C. I. 0105130751

Certificado

En calidad de tutor del trabajo de titulación denominado "EVALUACIÓN DE LOS PROCESOS DE POTABILIZACIÓN DE AGUA APLICADOS EN LA PTAP DE CACHIYACU DEL SISTEMA MUNICIPAL DE LA CIUDAD DE PAUTE", certifico que fue realizado por DANIEL MARCELO ROCANO PORTOVIEJO, estudiante de la carrera de Ingeniería Civil de la Universidad Católica de Cuenca, bajo supervisión del suscrito; trabajo que reúne los requisitos necesarios para su presentación y sustentación ante el tribunal que se disponga.

S HONGO VUNDA CO

ING. SANTIAGO AURELIO OCHOA GARCÍA PhD.

C.I. 010415814-2

DIRECTOR DEL TRABAJO DE TITULACIÓN

UNIVERSIDAD CATÓLICA DE CUENCA

Comunidad Educativa al Servicio del Pueblo

UNIDAD ACADÉMICA INGENIERÍA, INDUSTRIA Y CONSTRUCCIÓN

CARRERA DE INGENIERÍA CIVIL

EVALUACIÓN DE LOS PROCESOS DE POTABILIZACIÓN DE AGUA APLICADOS EN LA PTAP DE CACHIYACU DEL SISTEMA MUNICIPAL DE LA CIUDAD DE PAUTE

TRABAJO DE TITULACIÓN PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO CIVIL

AUTOR: DANIEL MARCELO ROCANO PORTOVIEJO DIRECTOR: ING. SANTIAGO AURELIO OCHOA GARCÍA PhD.

CUENCA - ECUADOR

2022

DIOS, PATRIA, CULTURA Y DESARROLLO

Dedicatoria

.

Este trabajo de investigación va dedicado a Dios quien ha sido mi guía, fortaleza y su mano de fidelidad y amor que han estado conmigo hasta el día de hoy. A mis padres Luis y Gladys, quienes con su amor, paciencia y esfuerzo me han permitido llegar a cumplir hoy un sueño y por inculcar en mí el ejemplo de esfuerzo y

valentía. A no rendirme jamás.

A mis Abuelita Rosa por sus consejos y su apoyo incondicional.

A mis hermanos Miriam, Lourdes y Michael por su cariño y apoyo incondicional, durante todo este proceso por estar conmigo en todo momento muchas gracias.

A mis sobrinas María José e Itzel que son la fuerza para seguir adelante.

Además, agradecer a la Universidad Católica de Cuenca y a los docentes de la facultad de ingeniería civil, por brindarme la formación necesaria para ser un mejor profesional, Un agradecimiento especial al ingeniero Santiago Ochoa y a la ingeniera Fabiola Uday por brindarme sus conocimientos y apoyo en esta última etapa. Finalmente, a todos mis compañeros y amigos por extender su mano brindándome su apoyo y compartiendo sus experiencias y vivencias.

Resumen

En la presente investigación se propone la evaluación de los procesos de potabilización de agua empleados en la PTAP ubicada en la comunidad de Cachiyacu, Cantón Paute, con el propósito de conocer la eficiencia de los tratamientos físico-químicos y bacteriológicos aplicados al agua destinada al consumo humano, empleados en la PTAP, para lograrlo se realizaron visitas a la planta a fin de conocer el estado actual de las unidades de tratamiento que se encuentran operativas, sus condiciones físicas y los reactivos utilizados en las distintas etapas del tratamiento. Se efectuaron entrevistas al personal técnico que opera la planta, esto para conocer los criterios con que se emplean los reactivos. Además, se caracterizó el agua (características organolépticas, físicoquímicas y bacteriológicas) a la entrada de la planta y al agua tratada (a la salida del tanque de floculación y a la salida de la planta), los valores obtenidos fueron comparados con las especificaciones establecidas en la norma NTE INEN 1108 para determinar si los parámetros evaluados (pH, color aparente, oxígeno disuelto, turbidez, alcalinidad, acidez, SDT, SST, coliformes fecales y coliformes totales) cumplen con los límites establecidos en la norma. En cuanto a la metodología empleada, la misma fue de tipo descriptiva con un diseño de campo. Los datos obtenidos permitieron realizar mejoras en las unidades que así lo requirieron y de esta manera garantizar que el agua que se está abasteciendo a la ciudad es potable, lo que redundará en una mejor calidad de vida para los habitantes de Paute.

Palabras clave: Planta de tratamiento, potabilización. agua potable. Cachiyacu.

Abstract

This research proposes evaluating the water purification processes used in the PTAP in the community of Cachiyacu, Canton Paute, to know the efficiency of the physicochemical and bacteriological treatments applied to water for human consumption in the PTAP. To do this, plant visits were made to identify the current status of the operational treatment units, their physical conditions, and the reagents used in the different treatment stages. Interviews were conducted with the technical staff who operate the plant to learn about the criteria used for reagents. Additionally, the water was characterized (organoleptic, physical-chemical, and bacteriological characteristics) at the plant's inlet and treated water (at the flocculation tank outlet and the plant outlet). The values obtained were compared with the specifications established in NTE INEN 1108 to determine whether the parameters evaluated (pH, apparent color, dissolved oxygen, turbidity, alkalinity, acidity, TDS, TSS, fecal coliforms, and total coliforms) comply with the limits established in the standard. The methodology used was descriptive with a field design. The data obtained allowed improvements to be made in the units that required it and thus guaranteed that the water being supplied to the city is potable, resulting in a better quality of life for the inhabitants of Paute.

Keywords: Treatment plant, potabilization, drinking water, Cachiyacu

Contenido

DedicatoriaV
ResumenVI
AbstractVII
ContenidoVIII
Contenido de ilustracionesXII
Contenido de tablasXIV
Contenido de anexosXVI
Capítulo I
1.1 Introducción
1.2 Antecedentes
1.3 Justificación
1.4 Objetivos
1.4.1. Objetivo General6
1.4.2. Objetivos Específicos6
1.5 Descripción metodológica
1.5.1. Tipo de investigación6
1.5.2. Diseño de la investigación
1.5.3. Métodos de la investigación
Método científico
1.5.4. Técnicas de recolección de datos primarios y secundarios9
1.5.5. Población y Muestra:10
Capítulo II: Marco teórico11
2.1 Planta de Tratamiento de Agua Potable (PTAP)

2.2	Calidad del Agua	. 14
2.3	Valoración de la calidad del agua	. 14
2.4	Parámetros de calidad del agua	. 14
2.5	Características físicas del agua	. 15
2.5.1. C	olor	15
2.5.2. C	Dior y Sabor	15
2.5.3. T	urbidez	16
2.5.4. S	ólidos Disueltos Totales (SDT)	16
2.5.5. S	ólidos Suspendidos Totales (SST)	16
2.6	Características químicas del agua	. 16
2.6.1. p	Н	16
2.6.2. A	cidez	17
2.6.3. A	lcalinidad	17
2.6.4. [Oureza	17
2.7	Características bacteriológicas del agua	. 17
2.7.1. B	acterias coliformes, Coliformes Fecales y Coliformes Totales	18
Capítul	o 3. Recopilación, procesamiento y validación de la información	. 19
3.1.	Parámetros medidos en el sitio	. 19
3.1.1.	Conductividad, pH y Oxígeno disuelto (OD)	19
4.1.	Parámetros determinados en el laboratorio	. 19
4.1.1.	Sólidos disueltos totales (TDS)	19
4.1.2.	Sólidos suspendidos totales (SST)	21
4.1.3.	Turbidez	22
4.1.4.	Acidez	23
4.1.5.	Alcalinidad	25

4.1.6.	Dureza26
4.1.7.	Color aparente27
4.1.8.	Coliformes
4.1.9.	Jar Test o Prueba de Jarras30
Capítu	lo 4. Evaluación de los procesos de la planta convencional de agua potable
de Cachiya	acu
4.1.	Diagnóstico de la necesidad de optimizar el control de la planta convenciona
de agua p	otable de Cachiyacu ubicada en el cantón Paute de la provincia del Azuay. 3
4.1.1.	Localización de la potabilizadora
4.2.	Determinación de los parámetros de calidad de agua cruda, a la salida de
tanque d	e floculación y en la descarga al reservorio bajo diferentes condiciones
temporal	es
4.2.1.	Sólidos suspendidos totales
4.2.2.	Sólidos disueltos totales
4.2.3.	Acidez40
4.2.4.	Alcalinidad
4.2.5.	Dureza44
4.2.6.	Conductividad49
4.2.7.	pH49
4.2.8.	Oxígeno disuelto
4.2.9.	Color aparente
4.2.10.	Turbidez4
4.2.11.	Coliformes48
4.2.12.	Prueba de Jarras49
4.3.	Alternativas que permiten mejorar los procesos de potabilización aplicados a
la PTAP	de Cachiyacu53
422	Duraza

4.3.3.	pH	55
4.3.4.	Oxígeno disuelto	56
4.3.5.	Color aparente	57
4.3.6.	Turbiedad	57
4.3.7.	Coliformes Totales	58
4.3.8.	Revisión de los procesos de la planta	64
Capítul	o V. Conclusiones y recomendaciones	. 67
5.1.	Conclusiones	. 67
5.2.	Recomendaciones	. 68
BIBLIC	OGRAFIA	. 70
Anexos		74

Contenido de ilustraciones

Ilustración 1. 1: Macro localización de la PTAP Cachiyacu	2
Ilustración 1. 2. Proceso de Potabilización de una PTAP convencional	3
Ilustración 1. 3. Esquema de Potabilizadora Cantón Paute	3
Ilustración 2.1. Ubicación de Rejilla para el Cribado	11
Ilustración 2.2. Presedimentación	11
Ilustración 2.3. Aireación	12
Ilustración 2.4. Coagulación	12
Ilustración 2.5. Floculación	12
Ilustración 2.6. Sedimentación o Decantación 13	
Ilustración 2.7. Filtración	13
Ilustración 3.1. Medidor multiparamétrico HACH	19
Ilustración 3.2. Medidor multiparamétrico (TDS) HACH	20
Ilustración 3.3. Turbidímetro HACH	23
Ilustración 4.1. Ubicación del cantón Paute	31
Ilustración 4.2. Ubicación de Cachiyacu en la provincia de Azuay	32
Ilustración 4.3. Localización planta de tratamiento en Cachiyacu	33
Ilustración 4.4. Esquema de la planta de tratamiento en Cachiyacu	33
Ilustración 4.5a.Condiciones fisicas a la entrada de la planta	34
Ilustración 4.5b. Tanque de floculaciòn	34
Ilustración 4.5c. Sedimentadores	34
Ilustración 4.5d. Filtración	34
Ilustración 4.5e. Sistema de desinfecciòn	34
Ilustración 4.5f . Salida al tanque de reserva	34

Ilustración 4.6a. Toma de muestra a la entrada de la planta (P1) en canaleta Parshall.	36
Ilustración 4.6b. Muestreo después de la floculación (P2)	36
Ilustración 4.6c. Captación a la salida de la planta (P3)	36
Ilustración 4.7a. Equipo para determinar SST	37
Ilustración 4.7b. Desecador para cápsulas de SST	37
Ilustración 4.7c. Cápsulas de porcelana + filtro para la determinación de SST	37
Ilustración 4.8. Equipo para medir Sólidos disueltos totales	39
Ilustración 4.9. Acidez	40
Ilustración 4.10. Alcalinidad a fenolftaleína y naranja de metilo	42
Ilustración 4.11. Dureza total	44
Ilustración 4.12a. Reactivos para coliformes fecales y totales	48
Ilustración 4.12b. Medios preparados para sembrar las muestras	48
Ilustración 4.12c. Siembras con presencia de coliformes	48
Ilustración 4.13 ^a . Químico utilizado para la formación de flòculos	49
Ilustración 4.13b. Equipo de prueba de jarras o Jar test	49
Ilustración 4.13c. Ensayo de prueba de jarras	49
Ilustración 4.14. Resultados sólidos totales vs valor normativo	54
Ilustración 4.15. Resultados dureza total vs valor normativo	54
Ilustración 4.16. Resultados pH vs rango de límite permisible	55
Ilustración 4.17. Valores de Oxígeno disuelto vs Límite normativos	56
Ilustración 4.18. Unidades de color aparente vs Límite máximo permitido	57
Ilustración 4.19. NTU vs Límite máximo permitido	57
Ilustración 4.20. NMP/100 ml vs Máximo	58
Ilustración 4.21. % remoción prueba de jarra con Al ₂ (SO ₄) ₃	61
Ilustración 4.22. Preparación en planta del Al ₂ (SO ₄) ₃	63

Contenido de tablas

Tabla 1.1. Coordenadas de ubicación de la PTAP Cachiyacu
Tabla 1.2. Frecuencia de monitoreo
Tabla 1.3. Cantidad de muestras a captar
Tabla 4.1. Condiciones ambientales en días de muestreo
Tabla 4.2. Sólidos suspendidos totales
Tabla 4.3. Sólidos disueltos totales
Tabla 4.4. Acidez41
Tabla 4.5. Alcalinidad
Tabla 4.6. Dureza
Tabla 4.7. Conductividad
Tabla 4.8. pH45
Tabla 4.9. Oxígeno disuelto
Tabla 4.10. Color aparente
Tabla 4.11. Turbidez47
Tabla 4.12. Coliformes fecales
Tabla 4.13. Coliformes totales
Tabla 4.14. Prueba de Jarra
Tabla 4.15. Resultados sólidos totales vs valores norma
Tabla 4.16. Porcentaje de variación de pH
Tabla 4.17. Resultados prueba de jarra con Al ₂ (SO ₄) ₃
Tabla 4.18. Resultados prueba de jarra con FeCl ₃
Tabla 4.19. Resumen de resultados

Tabla 4.19. Rediseño	para un caudal de 12.6lts/seg	64
Tabla 4.19. Rediseño	para un caudal de 20 lts/seg	65

Contenido de anexos

Anexo 1. 28-03-2022
Anexo 2. 04-04-2022
Anexo 3. 12-04-2022
Anexo 4. 18-04-2022
Anexo 5. 20-04-2022
Anexo 6. 25-04-2022
Anexo 7. 03-05-2022
Anexo 8. 10-05-2022
Anexo 9. 16-05-2022
Anexo 10. 30-05-2022
Anexo 11 Evaluación del gradiente del floculador hidráulico de flujo horizontal85
Anexo 12. Evaluación hidráulica de la unidad de sedimentación

Capítulo I

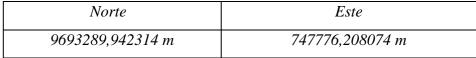
1.1 Introducción

En la presente investigación se evaluó la eficiencia de tratamiento de la planta potabilizadora convencional de agua ubicada en Cachiyacu, Cantón Paute, para tal fin se realizó la caracterización físico-química y bacteriológica del afluente a la PTAP y el efluente de la unidad de floculación y de la planta, esto con la finalidad de mejorar, si así lo ameritan, los tratamientos que se aplican y que al ser analizados, los valores de los parámetros indicativos de la eficiencia del tratamiento (pH, color, turbidez, oxígeno disuelto, presencia de coliformes, etc.) no cumplan con los requisitos para agua de consumo humano (NTE INEN 1108, 2020).

El incumplimiento de los límites normativos, podría incrementar las enfermedades de origen hídrico y de esta manera provocar consecuencias negativas en la salud humana, ocasionando molestias y alteración en sus actividades cotidianas. La pureza del agua de abastecimiento, minimiza considerablemente la posibilidad de presencia de patógenos en esta (Organización Mundial de la Salud, 2006).

Los patógenos son microorganismos causantes de enfermedad, pero al ser microscópicos no son perceptibles por los sentidos, esto podría ocasionar que un agua que visualmente sea incolora, inodora e insípida esté contaminada bacteriológicamente, en contra partida, un agua puede tener una excelente calidad bacteriológica pero por presentar niveles de turbidez que ocasionen desconfianza en el usuario, este no va a hacer uso de ella para su consumo pudiendo optar por consumir agua de dudosa calidad bacteriológica. De aquí que el agua destinada al consumo humano, no solo debe ser suficiente en cantidad, sino además, en calidad, valga decir que parámetros que la caracterizan satisfagan los valores normativos (Harriss, 2021).

Para la evaluación de los parámetros seleccionados, se tomaran muestras en la línea de aducción (entrada de la planta) en diferentes días y a diferentes horas del día, a fin de contar con suficiente información sobre las características del agua cruda y así poder conocer la composición que presenta , los parámetros físicos químico que se caracterizarán son: pH, color, turbidez, SST, SDT, alcalinidad, acidez, dureza, y la calidad bacteriológica medida en cantidad de bacterias coliformes (nmp/100 ml). Para analizar estos parámetros se contó con el apoyo del laboratorio de la Universidad, por lo que los resultados son confiables y valederos. Posteriormente, se caracterizaron los mismos


parámetros y compararon con lo estipulado en las normativas vigentes; como: el anexo 1 del libro VI del texto unificado de legislación secundaria del ministerio del ambiente: norma de calidad ambiental y de descarga de efluentes al recurso agua; Ley orgánica de recursos hídricos, usos y aprovechamiento del agua; Norma Técnica Ecuatoriana NTE INEN 1 108:2011: Agua potable. Requisitos.

Como se puede inferir, los datos aportados por los análisis realizados permitieron ajustar las dosis de aditivos a utilizar en la planta potabilizadora tanto en el tratamiento físico-químico como en lo que se refiere a la desinfección. Con esta información se conocieron las características actuales del agua que se utiliza para beber y para preparar los alimentos, procedente de la PTAP Cachiyacu, lo que permitió mejorarla a través de la propuesta a desarrollar en este estudio.

1.2 Antecedentes

La planta de tratamiento de agua potable convencional de Cachiyacu, se encuentra en un barrio que lleva su mismo nombre, ubicado en el Cantón Paute de la provincia del Azuay.

Tabla 1.1. Coordenadas de ubicación de la PTAP Cachiyacu

Fuente: Autor

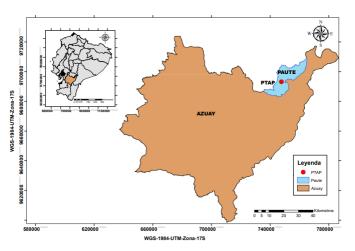


Ilustración 1. 1: Macro localización de la PTAP Cachiyacu Fuente:: geoportaligm (2017)

En la Ilustración 1. 2, se muestran las unidades que conforman una planta potabilizadora en forma general esquemática

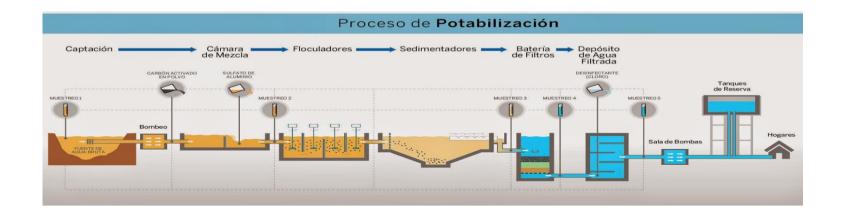


Ilustración 1. 2. Proceso de Potabilización de una PTAP convencional Fuente: (AQUAPROCYSA, 2019)

Las operaciones unitarias involucradas en una PTAP incluyen, un tanque de mezcla rápida (coagulación), un tanque de mezcla lenta (floculación), sedimentadores, filtros de material bien gradado, caseta de cloración, y un tanque de reserva esto puede ser elevado o sobre la superficie, antes de ser enviada a la red de distribución, tal como se muestra en la Ilustración 1.2. A continuación se muestra la figura en forma esquemática de la planta potabilizadora del cantón Paute.

Ilustración 1. 3. Esquema de Potabilizadora Cantón Paute Fuente: Autor

En la Ilustración 1. 3 se muestra el esquema de la PTAP del cantón Paute, se puede observar que de acuerdo a las unidades que la conforman (entrada, coagulación, floculación, sedimentación, filtración y cloración) la misma es de tipo convencional, para la distribución se da por gravedad ya que se encuentra en una zona alta de la ciudad.

Sin embargo, la planta de tratamiento de Cachiyacu cuenta con tres captaciones en serie ubicados en la quebrada del chorro blanco, están conformadas cada una de ellas de un desarenador y de una ventanilla lateral con una conducción de la primera captación aproximadamente 15 Km hasta llegar a la PTAP

En el año 2021 se realizó un estudio Análisis de riesgo de la calidad de agua potable de la obra de captación para la ciudad de Tupiza, Bolivia. Debido a que se ha considerado que, en caso contrario de resguardar los cuerpos de agua, su potabilidad se puede ver comprometida, ya que cuando se realiza el diseño de una PTAP, se hace considerando los parámetros de calidad del agua a tratar, y si estos varían por la falta de vigilancia, el agua de abastecimiento distaría mucho de ser potable. Se pudo determinar que en el diquetoma existe un nivel de riesgo elevado, debido a su exposición y susceptibilidad a la contaminación tanto por metales como por residuos sólidos (Jiménez & Miranda, 2021)

Para el año 2021, se elaboró un trabajo de investigación titulado: Diagnóstico y mejoramiento de la planta de tratamiento de agua potable (PTAP) del municipio de Coello, Colombia; el cual tuvo por objeto proponer las mejoras de la planta potabilizadora ubicada en Santa Bárbara, la misma no cumplía con las normas ambientales de ese país referidas a los valores establecidos para considerar al agua apta para consumo humano. Se estableció un protocolo de frecuencia de recolección y análisis de laboratorio. Con los resultados obtenidos se tramitó el arreglo de los equipos pertenecientes a la PTAP, igualmente se hizo un inventario de los reactivos necesarios para realizar los análisis mínimos que exige la normativa antes señalada (García, 2021).

En el 2020 se realizó la evaluación preliminar en las áreas de Hidráulica y Saneamiento de la Planta Potabilizadora de Barranca de Puntarenas, Costa Rica; con el fin de determinar la eficiencia de cada una de las unidades de tratamiento y de esta manera brindar las soluciones adecuadas para corregir, donde fuese necesario, su operatividad con el propósito de que a la comunidad se le suministre agua potable. En este estudio se determinó el caudal a tratar, se evaluó el estado de las unidades de tratamiento, se realizaron ensayos de parámetros físico-químicos y bacteriológicos. Con los resultados

obtenidos se concluyó que la planta no estaba operativa al cien por ciento, ya que algunas unidades no funcionaban adecuadamente (Mora, 2020).

En el año 2019, se elaboró una Guía para la evaluación técnica de plantas de tratamiento de agua potable, en la Universidad Libre de Socorro dentro del Programa de Especialización en Gestión Ambiental en Colombia, para evaluar la operatividad y el mantenimiento de los procesos de potabilización. Esto se realizó basado en el principio de que la municipalidad tiene el deber de abastecer a las comunidades con agua potable, alcantarillado y garantizarles el saneamiento a sus pobladores; debido al incremento poblacional se debe hacer uso de fuentes alternas de suministro de agua, por lo que se consideró necesario diseñar una guía para agilizar el diagnóstico de la calidad del vital líquido (Burgos, 2019)

En el 2018 se desarrolló la Evaluación de la calidad físico-química y microbiológica de la planta potabilizadora de agua del barrio Las Américas, en la ciudad de Puyo-Ecuador; para conocer la potabilidad del agua distribuida a los habitantes de esa comunidad, se analizaron parámetros organolépticos, físico-químicos y bacteriológicos. Los exámenes de laboratorio se realizaron utilizando métodos estandarizados, HACH y en los análisis bacteriológicos se utilizó la siembra en placa de Petri y el método de tubos múltiples. En el diagnóstico se comprobó que los parámetros microbiológicos incumplían lo establecido en la norma INEN 1108 (Fonseca & Andi, 2018). Del resultado obtenido en la mencionada investigación, nace la inquietud de plantearse el actual estudio.

1.3 Justificación

El uso de agua no potable, es una de las razones por las que las enfermedades de origen hídrico siguen causando daño en la salud de los habitantes en los países subdesarrollados. De allí la importancia de la calidad y la disponibilidad de esta. Este vital líquido es uno de los medios fundamentales para la transmisión de microorganismos, debido a ello, es importante mantener un control adecuado de la precitada calidad (worldcat, 2022). La OMS (2019) calcula que la morbilidad asociada a las enfermedades de origen hídrico, se reduciría entre un 20 y un 80 por ciento, si se certificara su potabilidad y debido abastecimiento.

Debido a que las características organolépticas del agua tratada no son las adecuadas, de acuerdo con la percepción del investigador, se hace necesario mejorar la calidad físico químico y bacteriológica del agua distribuida a la ciudad de Paute, por esta razón se realizó una evaluación de los procesos aplicados a fin de determinar cuál era necesario adecuar, esto, representaría un aporte social de primer orden ya que esto se vería reflejado en una disminución de casos en los sitos de asistencia sanitaria de personas con las patologías características como son los cuadros diarreicos, esto a su vez permitiría una mejor atención a ciudadanos con otras patologías, más en estos momentos cuando la humanidad atraviesa por una pandemia.

Cabe considerar, que los recursos ahorrados en el sector salud, se pueden direccionar a mejorar el manejo y operación del sistema de potabilización, con un excelente equipamiento de la planta potabilizadora convencional ubicada en Cachiyacu y la capacitación continua de los técnicos que la operan, de esta manera se estaría dando un aporte técnico que permitiría optimizar las características del agua abastecida a los barrios de esta ciudad.

1.4 Objetivos

1.4.1. Objetivo General

Evaluar la eficiencia de los procesos de potabilización utilizados en la planta de tratamiento de agua potable (PTAP) de Cachiyacu, cantón Paute, Provincia del Azuay.

1.4.2. Objetivos Específicos

- Diagnosticar la necesidad de optimizar el control de la planta convencional de agua potable de Cachiyacu ubicada en el cantón Paute de la provincia del Azuay.
- Determinar los parámetros de calidad de agua cruda, a la salida del tanque de floculación y en la descarga al reservorio bajo diferentes condiciones temporales.
- Plantear alternativas que permitan mejorar los procesos de potabilización aplicados en la PTAP de Cachiyacu.

1.5 Descripción metodológica

1.5.1. Tipo de investigación

Basándose en la direccionalidad de la indagación, se presenta un proyecto de aplicada con nivel descriptivo, ya que se pretende resolver un problema de eficiencia en la planta potabilizadora de agua convencional ubicada en Cachiyacu, presentando soluciones de

mejora de aplicación inmediata.

Aplicada: ya que el estudio a realizar permitirá caracterizar los parámetros organolépticos y bacteriológicos del agua abastecida a la ciudad de Paute, antes y después de ser tratada; y establecer la cantidad de aditivos a utilizar para que su potabilidad, esto mejoraría la calidad del agua que se abastece.

Descriptiva: en virtud de que los parámetros medidos serán mostrados tal como ocurren en la realidad, de acuerdo a los datos obtenidos al analizarlos en el laboratorio.

1.5.2. Diseño de la investigación

El diseño será no experimental, porque no se manipularán las variables, estas serán consideradas de acuerdo a los resultados de su caracterización.

Campo: puesto que los datos serán obtenidos de fuente primaria, ya que las muestras de agua serán tomadas in situ (planta potabilizadora).

1.5.3. Métodos de la investigación

Con base en el protocolo de investigación, se establecerá la descripción de los procedimientos a seguir. En función de que se desea evaluar la eficiencia de tratamiento físico-químico y bacteriológico de la planta potabilizadora de agua convencional ubicada en Cachiyacu, se realizará una revisión bibliográfica exhaustiva sobre literatura relacionada con el tema de investigación, tales como trabajos de grado, artículos científicos, libros y el marco normativo legal vigente, para la elaboración de los fundamentos teóricos, su aplicación y posterior obtención de resultados.

Método científico

La secuencia metodológica que permitirá dar respuesta a los objetivos se detalla a continuación:

- a) Para el Diagnóstico la situación actual del manejo y operación de la planta convencional de agua potable de Cachiyacu, cantón Paute, Provincia del Azuay.
 Se realizaron las siguientes actividades:
 - Localización de la planta potabilizadora, utilizando para ello Google Earth
 - Visitas a la planta, con la finalidad de observar el estado físico de sus

instalaciones

- Entrevista con los técnicos que operan la planta, a fin de conocer caudal tratado, qué características observan en el agua cruda, cuáles parámetros de potabilidad se evalúan, cómo lo hacen y la frecuencia con que se realiza la caracterización de cada parámetro.
- Determinar las características del agua cruda, a la salida del tanque de floculación y en la descarga al reservorio bajo diferentes condiciones temporales. Realizado el diagnóstico, se procederá de la siguiente manera:
- Toma de muestra afluente a la planta de tratamiento, después de los procesos de coagulación-floculación y a la salida de la PTAP
- Se establecerá una frecuencia de recolección de muestras de aproximadamente tres (03) meses, de la siguiente manera.

Tabla 1. 2. Frecuencia de monitoreo

Semana	Días	Hora
1	Lunes	Entre 10 y 11 am
2	Lunes	Entre 9 y 10 am
3	Martes	Entre 9 y 10 am
4	Lunes	Entre 9 y 10 am
5	Miércoles	Entre 10 y 11 am
6	Lunes	Entre 8 y 9 am
7	Martes	Entre 8 y 9 am
8	Martes	Entre 7 y 8 am
9	Lunes	Entre 7 y 8 am
10	Martes	Entre 7 y 8 am
11	Lunes	Entre 10 y 11 am

Fuente: Autor

Se incluyeron diferentes días de la semana y diferentes horarios; los horarios propuestos pretenden contemplar las posibles variaciones de los parámetros de calidad a evaluar que puedan presentarse en el caudal de entrada a la planta y así se podrá conocer el comportamiento de estos al caracterizarlos si existiera alguna variación horaria.

 b) La caracterización de los indicadores de calidad seleccionados para ser analizados en agua captada en distintos lugares de la planta, a saber: en la entrada (agua cruda), a la salida del tanque de floculación y en la descarga al reservorio bajo diferentes condiciones temporales. Las muestras se trasladaron al Laboratorio de Universidad donde se realizaron los análisis respectivos, parámetros fueron:

- SDT
- SST
- Acidez
- Alcalinidad
- Dureza Total
- pH
- Oxígeno disuelto
- Color aparente
- Turbiedad
- Coliformes Fecales
- Coliformes Totales

Para los procedimientos a utilizar tanto en campo como en el laboratorio, preservación de las muestras y posterior comparación de resultados, se utilizarán los métodos estandarizados para el examen de agua y agua residuales, edición 22 y la NTE INEN 1108 sexta revisión.

c) Planteamiento de las diferentes alternativas para mejorar los procesos de potabilización utilizados.

Para el logro de este objetivo, se tuvo en cuenta la información recolectada en el diagnóstico, lo que permitió conocer cómo se decide la cantidad de aditivo a utilizar en el tratamiento físico-químico y en la desinfección. Partiendo de esa información y los resultados de laboratorio, se evaluaron dos (02) aditivos que se pueden utilizar en el proceso de floculación, con la finalidad de plantear la alternativa adecuada.

1.5.4. Técnicas de recolección de datos primarios y secundarios

Observación directa: apoyada en una lista de chequeo que se elaborará para llevar un control riguroso de los datos observados.

Observación participante: esta técnica será aplicada para conocer la realidad de la manera en que se aplican los aditivos en la planta y se apoyará con una matriz DOFA como herramienta de análisis.

1.5.5. Población y Muestra:

Para la investigación que se desea desarrollar la población estará representada por el afluente a la planta potabilizadora, aproximadamente 20 L/s, lo que se traduce en 1728000 L/d. El tipo de muestra será no probabilística e intencional y estará conformada por las muestras de agua que serán captadas para caracterización, a la entrada y a la salida de cada unidad que conforma la planta potabilizadora de agua convencional ubicada en Cachiyacu. Se establecieron distintos días de la semana para realizar el muestreo, mismas que se llevaron a cabo a diferentes horas de los días seleccionados, a tal efecto se trabajará con 33 especímenes en total, tal como se presenta en la Tabla 1.3, estas sirvieron para realizar los ensayos antes señalados.

Tabla 1. 3. Cantidad de muestras a captar

Semana	Número de puntos de toma de muestra	Número de muestras
1	3	3
2	3	3
3	3	3
4	3	3
5	3	3
6	3	3
7	3	3
8	3	3
9	3	3
10	3	3
11	3	3

Total muestras 33

Fuente: Autor

Es importante mencionar que la población a beneficiar será de aproximadamente 9.850 personas.

Capítulo II: Marco teórico

2.1 Planta de Tratamiento de Agua Potable (PTAP)

Es una construcción de tanques colocados en serie, donde se aplican procedimientos para mejorar las propiedades físico-químicas y bacteriológicas del agua, con la finalidad de garantizar que el agua a la salida de la planta sea apta para consumo humano, es decir, el conjunto de operaciones unitarias para depurar el agua que va a ser abastecida a una comunidad (Hernández & Corredor, 2017, p. 26).

De acuerdo a Hernández & Corredor (2017), generalmente los componentes del sistema de tratamiento convencional, son:

- *Cribado*: unidad para la retención de elementos de un tamaño tal, que pudieran dañar los equipos de la planta. Ver ilustración 2.1

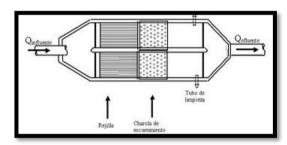


Ilustración 2.1. Rejilla para el Cribado

Fuente: (CUMD, 2021)

- *Presedimentación*: para separar partículas de menor tamaño tales como: grava, arena y limo. (Ilustración 2.2)

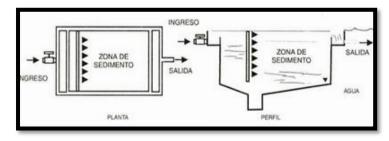


Ilustración 2.2. Presedimentación

Fuente: (Fernández, 2020)

- *Aireación*: para eliminar olores y gases disueltos y aumentar el contenido de oxígeno gaseoso disuelto en el agua, como se muestra en la ilustración 2.3.

Ilustración 2.3. Aireación Fuente: (CUMD, 2021)

- *Coagulación*: es la unidad donde se adiciona un polímero para promover la inestabilidad del material particulado en suspensión con la finalidad de aumentar la fuerza de atracción entre ellas, señalado en la ilustración 2.4

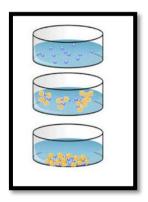


Ilustración 2.4. Coagulación *Fuente:* (CUMD, 2021)

 Floculación: en esta unidad las partículas aumentan de tamaño, proceso de mezcla lenta; lo que permite que las mismas puedan sedimentar a causa de la fuerza de gravedad. Ver ilustración 2.5

Ilustración 2.5. Floculación Fuente: (CUMD, 2021)

- *Sedimentación*: aquí por efecto de la fuerza de gravedad las partículas decantan y de allí son purgadas por el fondo del sedimentador, indicado en la ilustración 2.6.

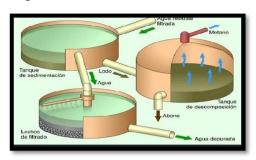


Ilustración 2.6. Sedimentación o Decantación

Fuente: (CUMD, 2021)

- *Filtración*: este proceso permite quitar el material suspendido a través de la colocación de filtros rápidos y filtros lentos debidamente gradados, además de la remoción de microorganismos resistentes a la desinfección (pp. 27-38), mostrado en la ilustración 2.7.



Ilustración 2.7. Filtración

Fuente: (CUMD, 2021)

- *Cloración:* Es un procedimiento comúnmente utilizado en la desinfección del agua por su carácter residual, razón por la cual generalmente se aplica en el tanque de reserva de agua previo a su distribución (Hidalgo, 2020), como se indica en la ilustración 2.8.

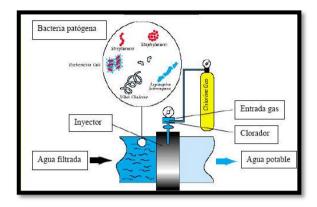


Ilustración 2.8. Cloración

Fuente: (CUMD, 2021)

A los tratamientos antes mencionados, se les pueden adicionar otras unidades de proceso, dependiendo de la necesidad de optimizar las características del agua a la salida de la planta potabilizadora.

2.2 Calidad del Agua

Se define como las características que tiene el vital líquido para ser usada en una determinada actividad, esto va a depender de sus propiedades organolépticas, físicas-químicas y microbiológicas que ese suministro requiera. Para su determinación, se usan métodos estandarizados señalados por cada país y los parámetros caracterizados se comparan con los requisitos que estipulan sus normas (Cordy, 2014).

2.3 Valoración de la calidad del agua

Varios parámetros que pueden ser medidos in situ, en la fuente de abastecimiento tales como: temperatura, acidez (pH), oxígeno disuelto y conductancia eléctrica, otros deben ser determinados por medio de análisis realizados en un laboratorio (Cordy, 2014).

2.4 Parámetros de calidad del agua

Como señala Pardillo (2016), Cuando vas a utilizar agua en tu casa, te pueden surgir ciertas interrogantes ¿Qué tan fiable es el agua que me están abasteciendo? o ¿cuál es su composición?

El cuidado que se debe tener de las características del agua utilizada para ser consumida, se inicia en el cuerpo de agua que la contiene, bien sea de fuentes superficiales o subterráneas, posterior existe la obligación de ser tratada y continuar a lo largo de la red

de distribución hasta llegar a cada vivienda que se va a abastecer. En el presente estudio se establecerán los puntos de recolección, posteriormente, las muestras tomadas se caracterizarán en el laboratorio.

Con los métodos adecuados, el profesional del laboratorio analizará los parámetros obligatorios para saber si el agua es potable. Todos los resultados obtenidos de las caracterizaciones realizadas son analizados e interpretados para verificar si existe alguna inconformidad con los valores permitidos en la norma. De allí la importancia de poder determinar las propiedades del agua.

2.5 Características físicas del agua

El agua posee algunas características físicas entre las que se pueden mencionar: color, olor, sabor y turbidez, que tienen repercusión en su apariencia, lo que puede ocasionar desconfianza en los consumidores al momento de utilizarla. Estas características pueden verse alteradas por diversos factores, por ejemplo: el color lo puede causar la presencia de materia orgánica, hierro o manganeso. El olor y el sabor, contaminación del cuerpo de agua de origen industrial o compuestos orgánicos provenientes de la actividad microbiana. En el caso de la turbidez, puede afectar el atractivo del agua para ser consumida. De aquí que, en las plantas potabilizadoras de agua se caracterizan estas propiedades para distribuir un agua que cumpla con los valores establecidos en las normas de cada país (TECNOSOLUCIONES, 2020).

2.5.1. Color

Es una característica sensorial que aporta información sobre la composición del agua y el procedimiento a utilizar para mejorar lo relativo a su percepción. En el laboratorio, se determina el "color real", una vez eliminada la turbidez y el "color aparente" que es indicativo de sólidos suspendidos y disueltos (Blancas & Javier, 2019).

2.5.2. Olor y Sabor

Estos parámetros son los principales causantes de la desconfianza que puede tener un usuario en cuanto a consumir el agua, ya que por ejemplo los compuestos fenólicos son fácilmente detectados por el sentido del olfato, a pesar de que en bajas concentraciones no se perciben en forma gustativa, otro ejemplo que se puede señalar es el olor que

caracteriza al sulfuro de hidrógeno (huevo podrido) que puede ser un indicador de contaminación por compuestos orgánicos en el agua (Hidalgo, 2020).

2.5.3. Turbidez

Es un parámetro indicativo de materia orgánica e inorgánica en suspensión, el contenido de estas es un condicionante del color y beneficia el proceso de crecimiento microbiano, debido a que suministra nutrimentos además de una base para su proliferación (Blancas & Javier, 2019). Cuando los valores superan lo establecido en las normas, se realiza en el laboratorio la Prueba de Jarras, a través de este ensayo se puede establecer la dosificación del producto químico a aplicar para alcanzar una mejor clarificación del agua, esta dosis será donde se observe una menor turbidez.

2.5.4. Sólidos Disueltos Totales (SDT)

Son compuestos que quedan diluidos en el agua, son los pasantes de un filtro de fibra de vidrio con abertura de 1.5 micras, para su determinación deben ser calentados en estufa a una temperatura de 180°C (Carbotecnia, 2021).

2.5.5. Sólidos Suspendidos Totales (SST)

Son los retenidos en el filtro de fibra de vidrio con abertura de 1.5 micras. La sumatoria de los SDT + SST, permite conocer la cantidad de sólidos totales (ST) en la muestra de agua L (Carbotecnia, 2021).

2.6 Características químicas del agua

La presencia de sustancias químicas en el agua bien sea de origen natural o antrópico, pueden alterar sus características químicas, para provecho o para perjuicio de la salud, dependiendo de la composición y la cantidad que esté presente. Se pueden mencionar el Aluminio, el cual disminuye el nivel de pH, el Mercurio que afecta directamente a la salud por su toxicidad, el Hierro que, a pesar de encontrarse en algunas aguas naturales en baja concentración, puede causar turbidez, trasmitir color al agua y ocasionar incrustaciones en las tuberías (TECNOSOLUCIONES, 2020).

2.6.1. pH

El pH es una característica del agua potable que depende de la concentración de iones

hidrógeno en la misma e indica el carácter ácido o básico de esta, tanto valores muy altos (pH>10), como valores muy bajos (pH<4) pueden ocasionar daños en el organismo. Es importante su determinación ya que influye en los procesos de coagulación y la desinfección (SCIELO, 2018).

2.6.2. Acidez

La acidez del agua es la capacidad del agua para neutralizar bases. Este parámetro es un indicativo de la cantidad de base que se debe añadir para aumentar el pH a un valor deseado (Sawakinome, 2022). No se debe confundir con el valor de pH que es un indicativo del carácter ácido del agua, este valor se presenta en mg/L o ppm CaCO₃.

2.6.3. Alcalinidad

Se refiere a la capacidad del agua para neutralizar ácidos, la alcalinidad es causada sobre todo por sales de ácidos débiles, siendo los mayores contribuyentes a los valores de este parámetro el hidróxido y el bicarbonato. Casi siempre, si el agua es pura solo se obtienen valores de alcalinidad, ya que las aguas naturales contienen dióxido de carbono disuelto (Sawakinome, 2022). Asimismo, este parámetro no debe ser ligado al carácter básico del agua, también se mide en relación al CaCO₃, bien sea en ppm o en mg/L.

2.6.4. Dureza

La dureza de un agua es producida generalmente por iones de Ca⁺⁺, Mg⁺⁺ y más ocasionalmente por estroncio bivalente, en algunas investigaciones se ha señalado que los iones de Aluminio trivalente, también pueden ser causantes de la dureza del agua. Usualmente en el laboratorio se determina la dureza cálcica y la dureza magnésica, esta última se obtiene de la diferencia entre la dureza total y la cálcica (Ulloa, 2019)

2.7 Características bacteriológicas del agua

En toda la bibliografía consultada hacen referencia a la existencia de patógenos en el agua de consumo y se señala a las bacterias del grupo coli como el indicador de este tipo de contaminación del agua, de allí la importancia de la determinación del NMP/ 100 ml de agua captada en el muestreo (ICB Editores, 2017).

2.7.1. Bacterias coliformes, Coliformes Fecales y Coliformes Totales

Las bacterias coliformes con del grupo de enterobacterias, es decir, se encuentran en el tracto intestinal sin causar ninguna patogenicidad. Cuando de calidad del agua se habla se hace necesario la caracterización de bacterias Coliformes Fecales y Coliformes Totales. La Escherichia coli pertenece a este grupo y es usada como parámetro en los análisis de calidad de agua ya que es un indicativo de contaminación fecal. Esta bacteria al entrar en contacto con el ambiente u otras cepas del grupo coli, aumentan su virulencia al punto de ocasionar problemas intestinales (ICB Editores, 2017).

La existencia de coliformes totales no implica que necesariamente el agua cause enfermedad. Como se señaló, es un indicador de que el agua de suministro tiene presencia de microorganismos.

Capítulo 3. Recopilación, procesamiento y validación de la información

3.1. Parámetros medidos en el sitio

Se utilizó un equipo portátil, con una delineación amplia lo que permite realizar mediciones eficaces in situ de las cuantificaciones necesitadas con solo un equipo. Son dispositivos resistentes al agua, de fácil manejo y con resultados exactos, por lo que no hay un nivel de incertidumbre en relación a la información recolectada por este medio. (HACH, 2022).

3.1.1. Conductividad, pH y Oxígeno disuelto (OD)

4. Con el equipo multiparamétrico de una entrada, marca HACH, el cual fue utilizado para la medición de la conductividad, pH y oxígeno disuelto, este equipo High Quality Digital (HQD) por sus siglas en inglés, se vincula con electrodos inteligentes que registran en automático la medición a realizar, lo que permite disminuir los errores y el lapso de configuración. Para cada parámetro existe la sonda respectiva, el electrodo o sonda a utilizar, depende de la característica a analizar (HACH, 2022), de acuerdo con la información sobre el uso aportada por el fabricante, se colocaron en cada uno de los puntos a estudiar, el dispositivo hasta que se estabilizó el valor del resultado.

Ilustración 3.1. Medidor multiparamétrico HACH Fuente: (HACH, 2022)

4.1. Parámetros determinados en el laboratorio

4.1.1. Sólidos disueltos totales (TDS)

- Materiales:
 - Cápsula de porcelana
 - Pinzas para cápsula

- Vasos de precipitado de 50 y 100 mL
- Pipeta volumétrica de 20 mL

Equipos

- Medidor multiparamétrico HANNA
- Sonda HI-9829

- Procedimiento

- Tomar una muestra de aproximadamente 150 ml y colocarla en el vaso de precipitado.
- Introducir la sonda correspondiente para la medición de los sólidos disueltos totales.
- El equipo utilizado fue un medidor multiparamétrico de marca HANNA, este medidor puede calcular hasta 15 parámetros de acuerdo a las necesidades del usuario, utilizando la sonda correspondiente el HI 9829, puede medir la cantidad de TDS entre otros parámetros (hanna, 2022)
- Se espera que se estabilice y me da el resultado en ppm de solidos disueltos.

Ilustración 3.2. Medidor multiparamétrico (TDS) HACH Fuente: (hanna, 2022).

- Validación

El valor medio obtenido a la salida de la planta fue de 78,54 mg/L. Una investigación realizada por la Organización Mundial de la Salud, indica que los valores de sólidos disueltos totales TDS en el agua potable (en mg/l o PPM) son:

0 - 300 Excelente

300 – 600 Nivel bueno

600 – 900 Nivel aceptable

900 – 1200 Nivel pobre o no recomendable

1,200 a más Inaceptable.

De acuerdo con esta información, además de estar en el rango de excelencia, es un nivel esperado una vez que el agua ha sido tratada, es más si se toma en cuenta el valor de este parámetro en el agua cruda 89,72 mg/L, se puede observar que está en el mismo rango, por lo que la calidad del afluente a la PTAP respecto a los TDS, es muy buena (Carbotecnia, 2021)

4.1.2. Sólidos suspendidos totales (SST)

- Materiales:

- Cápsula de porcelana
- Pinzas para cápsula
- Termómetro
- Soporte para embudo
- Vasos de precipitado de 50 y 100 mL
- Pipeta volumétrica de 20 mL
- Papel de filtro
- Agitador de vidrio

- Equipos

- Balanza analítica
- Plancha de calentamiento
- Estufa de temperatura controlada
- Desecador

- Procedimiento

- Se introduce la cápsula de porcelana más el filtro de nitrocelulosa en la estufa a 105 °C por 15 minutos.
- Se saca y se coloca en el desecador por 15 minutos para que se enfríe
- Se saca del desecador se pesa la capsula más el filtro.
- Se procede a filtrar 20ml ó 50ml de la muestra con el equipo de filtración al vacío.

- Se coloca en la estufa la cápsula más el filtro a 105 °C por 15 minutos.
- Se coloca en el desecador la cápsula más el filtro por un tiempo de 15 minutos.
- Se procede a pesar la cápsula más el filtro.
- Se calcula el total de los sólidos suspendidos con la siguiente fórmula.

$$-\frac{Peso\ final-Peso\ inicial}{Volumen\ dela\ muestra}=g/ml$$

• Se convierte el valor obtenido en g/ml, a mg/L o ppm.

Validación

Según (Hernàndez, 2007), al analizar las muestras debe tener en cuenta el intervalo donde este valor se considera válido (50 - 500 mg/L), en esta investigación se obtuvo un promedio en la entrada a la planta de 119,36 mg/L de SST; como se puede observar, ese valor está en el rango.

4.1.3. Turbidez

- Equipos

• Turbidímetro de marca HACH, equipo portátil 2100Q

- Procedimiento

- Se agita la muestra y se llena en el frasco que viene en el equipo para medir la turbidez.
- Se seca completamente el frasco y luego se coloca en el turbidímetro de marca HACH, este equipo portátil 2100Q es de fácil de uso y brinda precisión en la medida de turbiedad. Con tecnología de punta en cuanto a medición, brindando resultados confiables (HACH, 2022).
- Se mide la turbiedad que viene dada en unidades de Unidades Nefelométricas de Turbidez (NTU).

Ilustración 3.3. Turbidímetro HACH Fuente: (HACH, 2022)

Validación

Con respecto a la turbidez, no existe un valor típico para las aguas crudas de los ríos, ya que va a depender de múltiples factores de acuerdo a las descargas que este reciba, sin embargo, lo importante es que el agua a la salida de la planta cumpla con el límite establecido en la norma (NTE INEN 1108, 2020). De acuerdo a los resultados obtenidos el promedio fue de 0,94 NTU, cuantía que está por debajo de 5 NTU (límite máximo permitido)

4.1.4. Acidez

- Materiales:

- Vasos de precipitado de 100 mL y 250 mL
- Bureta de 50 mL
- Pipeta volumétrica de 10 mL
- Matraz Erlenmeyer de 250 mL
- Agitador de vidrio
- · Cinta de pH

Equipos

- pH-metro
- Electrodo combinado

- Reactivos

- Soluciones buffers de pH 4, 7 y 9
- Solución de hidróxido de sodio (NaOH) 0,02 N

- Indicador Fenolftaleína (P)
- Indicador Naranja de metilo (M)

- Procedimiento

Acidez al naranja de metilo

- Se colocan 100 ml de la muestra en un vaso de precipitado
- Se agregan 3 gotas de naranja de metilo (M)
- Se titula con NaOH al 0.02N, hasta un viraje de amarillo a canela.

•

Acid. al n de
$$m = \frac{Vol. base * N base * meqCaCO3 * (0.05) * 1000 * 1000}{Vol. muestra}$$

$$= ppm CaCO3$$

La acidez también se expresa como mg/L ó ppm como CaCO3

Acidez a la fenolftaleína

- Se colocan 100 ml de la muestra en un vaso de precipitado
- Se agregan 3 gotas de fenolftaleína
- Se debe titular con Hidróxido de sodio NaOH al 0.02N, hasta un viraje incoloro a rosado. Anotar el volumen del viraje.

$$Acid.\,a\,\,la\,\,fenoltale\'ina = \frac{Vol.\,base*N\,\,base*meqCaCO3*(0.05)*1000*1000}{Vol.\,\,muestra} \\ = ppm\,\,CaCO3$$

• La acidez también se expresa como ppm CaCO₃

La acidez total es la suma de la acidez al naranja de metilo y a la fenolftaleína

Validación

El índice promedio obtenido fue de 38,63 ppm como CaCO₃, la alcalinidad presenta un valor promedio fue de 8 ppm como CaCO₃, estos valores pueden servir de apoyo al momento de tener que tomar decisiones sobre cómo mejorar la calidad del agua de ser necesario, observando por ejemplo el pH de la muestra en el punto de vire, este es un indicativo de qué está produciendo la alcalinidad. En la tabla siguiente se presentan los criterios de calidad estándar para el agua de consumo humano.

4.1.5. Alcalinidad

- Materiales:

- Vasos de precipitado de 100 mL y 250 mL
- Bureta de 50 mL
- Pipeta volumétrica de 10 mL
- Matraz Erlenmeyer de 250 mL
- Agitador de vidrio
- Cinta de pH

- Equipos

- pH-metro
- Electrodo combinado

Reactivos

- Soluciones buffers de pH 4, 7 y 9
- Solución de ácido sulfúrico (H2SO4) 0,02 N
- Indicador Fenolftaleína (P)
- Indicador Naranja de metilo (M)

- Procedimiento

Alcalinidad a la fenolftaleína

- En un vaso de precipitado se colocan 100 ml de la muestra.
- Se agregan 3 ó 4 gotas de indicador fenolftaleína
- Si es positivo = color rosado. Hay presencia de hidróxidos (OH) y carbonatos (CO) o ambos.
- Si es negativo = no hay cambio de color.
- Se titula con HCL (ácido Clorhídrico al 0.02N hasta un viraje incoloro).
- Se anota el volumen del viraje pH óptimo de viraje= 8.2

Alc. a M y
$$P = \frac{Vol. Acido * N \ acido * meqCaCO3 * (0.05) * 1000 * 1000}{Vol. \ muestra}$$

$$= ppm \ CaCO3$$

Alcalinidad al naranja de metilo

- En un vaso de precipitado se colocan 100 ml de muestra.
- Se agregan 3 ó 4 gotas del indicador naranja de metilo

- Si es positivo = color amarillo
- Negativo = Naranja nota. (Recordar que es una prueba para identificar bicarbonatos. pH óptimo de viraje 4.3.
- Se titula con HCL (ácido Clorhídrico al 0.02N hasta un viraje anaranjado).
- Se anota el volumen utilizado hasta el viraje.

$$Alc. a \ M \ y \ P = \frac{Vol. \land cido * N \land cido * meqCaCO3 * (0.05) * 1000 * 1000}{Vol. \ muestra} = ppm \ CaCO3$$

Para calcular la Alcalinidad total se suman alcalinidad a P y alcalinidad a M

4.1.6. Dureza

- Materiales

- Bureta de 50 mL
- Vasos de precipitado de 50 y 100 mL
- Pipeta volumétrica de 50 mL
- Agitador de vidrio
- Cinta de pH
- Matraz Erlenmeyer de 250 mL

- Reactivos

- Solución de EDTA 0.01 M
- Mezcla sólida de o Indicador negro de Eriocromo T
- Solución buffer de NH3/NH4Cl
- Mezcla sólida de murexida Solución de NaOH, 1N
- Inhibidores I y II (opcionales)

- Procedimiento

- Se captan 100 ml cada una de las muestras.
- Se coloca el indicador de dureza bien diluida
- Se agregan 0.5ml de solución tampón de dureza.
- Se homogeniza la muestra y se procede a titular con la solución EDTA a 0.02N hasta el vire (cambio de color).
- Se toma nota del volumen utilizado hasta el momento del viraje
- Se calcula la dureza con la siguiente fórmula.

Volumen de la muestra

= ppm

- El resultado se obtiene en ppm de CaCO3
- En función de la dureza calculada, se puede conocer el carácter del agua en cuanto al grado de dureza.

Validación

De acuerdo con Carbotecnia (2021), en estudios realizados en Colombia, en los ríos es frecuente encontrar dureza en el rango (0-800 ppm como CaCO₃), y una vez tratada los valores deben cumplir con los límites establecidos por cada país, la media encontrada en el agua cruda de la presente investigación fue de 53 ppm como CaCO₃, con valores comprendidos entre 40 y 85 ppm como CaCO₃.

4.1.7. Color aparente

- Materiales

Tubos de ensayo

Equipos

• Espectrofotómetro marca HACH.

- Procedimiento

- Se colocan 10 ml de la muestra en los tubos de ensayo.
- Se procede a realizar la medición utilizando un Espectrofotómetro marca HACH.
- Previamente se coloca el blanco (Agua destilada)
- Se introducen cada una de las muestras y se procede a realizar la medición
- El resultado da en unidades de platino-cobalto Pt-Co.

Validación

No existe un valor típico de este indicador organoléptico de calidad del agua, pero debe evitarse que a la salida del sistema de tratamiento supere los 15 mg/l Pt/Co, de forma tal que los usuarios no opten por consumir agua de dudosa calidad bacteriológica por desconfianza debida a las elevadas unidades de color. En este caso se consiguió un promedio de 29 mg/l Pt/Co, siendo indicativo de la necesidad de tratamiento.

4.1.8. Coliformes

- Materiales

- Pipetas serológicas de punta ancha de 1, 5 y 10 cm3 graduadas en 1/10 de unidad
- Cajas Petri
- Tubos de 160 x 16 mm y de 125 x 12 mm
- Tubos Durhan de 50 x 6 mm
- Erlenmeyer de 500 y 1000 cm³
- Frascos de boca ancha de 250, 500 y 1000 cm³ con tapa de rosca autolavable
- Asa de inoculación
- Gradillas

Equipos

- Balanza de capacidad no inferior a 2500 gr y de 0,1 gr de sensibilidad
- Inoculador regulable, rango de temperatura 25 70 +/- 1°C
- Autoclave
- pH-metro

Reactivos

- Caldo verde brillante bilis-lactosa
- Agar eosina azul de metileno
- Solución de peptona al ,1% (INEN, 2002)

- Procedimiento

Coliformes totales

- Se procede a preparar el reactivo 16,65g de caldo bilis verde brillante en el Erlenmeyer y se diluye en 450ml de agua destilada.
- Se homogeniza el medio
- Se esteriliza a 121^oC por 15 minutos.
- Se deja enfriar
- Se colocan 10 ml de medio en 45 tubos de ensayo (15 tubos por muestra, fueron 3 puntos de recolección)
- Se realiza tres diluciones 1/10; 1/100; 1/1000.
- En la dilución 1/10 colocar de muestra 10ml

- En la dilución 1/100 colocar de muestra 1ml
- En la dilución 1/1000 colocar de muestra 0.1ml
- Luego se colocan los tubos de ensayo en la incubadora a 37ºC por 24 a 48 horas
- Se revisan los tubos, para chequear cuales dieron positivo y cuáles negativos
- Se consideran positivos los resultados cuando el tubo presenta turbidez, formación de gas y presencia de burbuja en la campana Durham.

Coliformes fecales

- Se procede a preparar el reactivo 18g de caldo EC (cultivo específico para distar los coliformes fecales y el test de confirmación de E. coli) en el Erlenmeyer y se diluye en 450 ml de agua destilada.
- Se diluye completamente el medio
- Se esteriliza a 121°C por 15 minutos.
- Se le deja enfriar
- Se colocan 10 ml de medio en 45 tubos de ensayo (15 tubos por muestra, fueron 3 puntos de recolección)
- Se realiza tres diluciones 1/10; 1/100; 1/1000.
- En la dilución 1/10 colocar de muestra 10ml
- En la dilución 1/100 colocar de muestra 1ml
- En la dilución 1/1000 colocar de muestra 0.1ml
- Luego se colocan las muestras en la incubadora a 44.5°C por 24 a 48 horas
- Se revisan los tubos, para chequear cuales dieron positivo y cuáles negativos
- Se consideran positivos los resultados cuando el tubo presenta turbidez, formación de gas y presencia de burbuja en la campana Durham.

Validación

Así mismo, la presencia de coliformes fecales y totales, obedece al tipo de descarga que se realice en el río que sirva como fuente de abastecimiento, por lo que es casi imposible que un agua cruda presente 0 nmp/100ml, debido básicamente al avance de la frontera agrícola en nuestras montañas que son las fuentes naturales de agua). Los valores obtenidos entre 0 y 2 NMP/100 ml señalan el grado de desinfección necesaria,

generalmente estas bacterias no son patógenas, pero son indicadoras de que existan bacterias que sí lo son, lo recomendable, es que el agua de consumo tenga ausencia de microorganismos del grupo coli (extension.psu, 2020). En la planta estudiada se utiliza cloro como aditivo desinfectante y la dosis debe ser calculada en función al caudal y a que se garantice la presencia de cloro residual en la red de distribución.

4.1.9. Jar Test o Prueba de Jarras

- Materiales

- 4 vasos de precipitado
- Varillas de vidrio

- Equipos

Equipo Jarra Test

- Reactivos

- Sulfato de aluminio
- Cloruro férrico

- Procedimiento

- Se mide la turbiedad inicial.
- Se colocan 800ml en los vasos de precipitado
- Se preparan diferentes dosis de sulfato de aluminio dependiendo de la turbidez
- Se coloca en el equipo y se realiza una mezcla rápida, luego una mezcla lenta por un determinado tiempo. En este estudio fue 1 min, a diferentes revoluciones
- Se dejan que sedimenten los sólidos, para esta investigación el intervalo fue de 20 a 30 minutos.
- Se mide nuevamente la turbidez y comparan los resultados con el valor inicial de turbidez
- Se calcula el porcentaje de remoción.

Capítulo 4. Evaluación de los procesos de la planta convencional de agua potable de Cachiyacu

4.1. Diagnóstico de la necesidad de optimizar el control de la planta convencional de agua potable de Cachiyacu ubicada en el cantón Paute de la provincia del Azuay.

4.1.1. Localización de la potabilizadora

A continuación, se muestra la ubicación del cantón Paute (Ilustración 4.1), de Cachiyacu en la provincia de Azuay (Ilustración 4.2), la localización planta de tratamiento en Cachiyacu (Ilustración 4.3) y el Esquema de la planta de tratamiento en Cachiyacu (Ilustración 4.4).

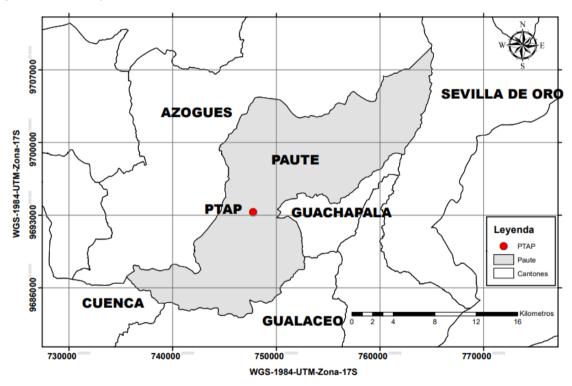


Ilustración 4.1. Ubicación del cantón Paute

Fuente: geoportaligm (2017)

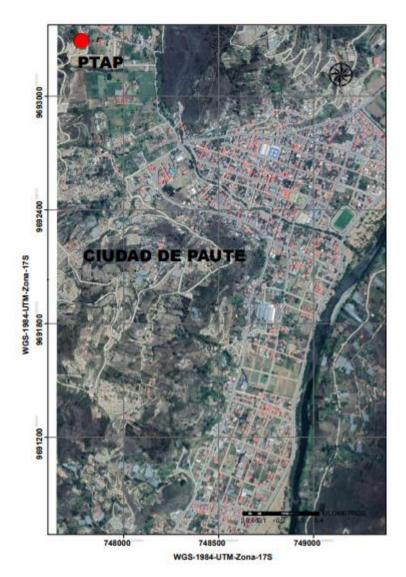


Ilustración 4.2. Ubicación de Cachiyacu en la provincia de Azuay Fuente: (Google Earth, 2022)

Ilustración 4.3. Localización planta de tratamiento en Cachiyacu Fuente: (Google Earth, 2022)

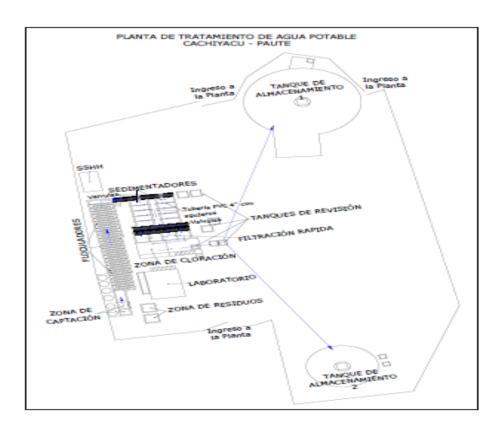


Ilustración 4.4. Esquema de la planta de tratamiento en Cachiyacu Fuente: Autor

Las condiciones físico-estructurales de la planta, es otro factor que se observó al momento de realizar las visitas de campo, las cuales se muestran en la ilustración 4.5a; 4.5b; 4.5c: 4.5d; 4.5e y 4.5f.

Ilustración 4.5a. Condiciones físicas a la entrada de la planta Fuente: Autor

Ilustración 4.5b. floculadores Fuente: Autor

Ilustración 4.5c. Sedimentadores Fuente: Autor

Ilustración 4.5d. Filtración Fuente: Autor

Ilustración 4.5e. Sistema de desinfección (cloración) Fuente: Autor

Ilustración 4.5f Salida al tanque de reserva Fuente: Autor

Los estudios realizados para el rediseño de la planta se realizaron por el consultor el Ing. Luis Alvarracín en octubre del 2010, se determinó que la misma consta de un sistema de captación de las aguas de la quebrada del chorro blanco, con una línea de conducción de 15.0 km aproximadamente, clasificada como una planta de tratamiento de tipo

convencional (Filtración Rápida) construida con una capacidad de 12.6 lts./seg., dos reservorios de 600 y 200 m³ de capacidad y red de distribución que abastece a los usuarios de la ciudad tanto de la parte alta como el centro cantonal; después de la restructuración . Como se puede observar en las ilustraciones anteriores, las unidades que conforman la planta de tratamiento se conserva en buenas condiciones físicas. Las dimensiones de las unidades son las siguientes:

Zona de captación, entrada a la planta. L = 6.15 m x 1.65 m

Floculación: $L = 21.45 \text{ m} \times 3.255 \text{ m}$

Filtración: 2.73 m x 7.65 m

Zona de cloración: 2 m x 7.65 m

Salida al tanque de almacenamiento: 0,80 m x 4.37 m

Sedimentador: en el anexo 12 se muestra la evaluación hidráulica de esta unidad.

Seguidamente, se procedió a evaluar la planta desde el punto de vista operativo.

Con el objeto de conocer las características del agua a tratar en la PTAP de Cachiyacu, se tomaron muestras de agua cruda a la entrada de la planta y se le determinaron: sólidos suspendidos totales, sólidos disueltos totales, acidez, alcalinidad, dureza, conductividad, pH, oxígeno disuelto, turbiedad, color aparente, coliformes fecales y coliformes totales. Se procedió de la misma manera para evaluar la eficiencia de los tratamientos aplicados al agua para potabilizarla, siendo los puntos de recolección la unidad de floculación (P2) y a la salida de la planta (P3). A estas muestras, también se le realizaron los ensayos antes señalados a fin de diagnosticar la necesidad de optimizar el control en la PTAP. Se consideró importante indicar el clima y la temperatura de cada día de muestreo, indicados en la tabla 4.1.

Tabla 4.1. Condiciones ambientales en días de muestreo

Número monitoreo	Fecha	Clima	Temperatura ⁰ C	Hora
1	28/03/2022	Parcialmente nublado	17°C	10:04
2	04/04/2022	Soleado	16^{0} C	09:19
3	12/04/2022	Soleado	16°C	09:00
4	18/04/2022	Parcialmente nublado	13°C	09:17
5	20/04/2022	Fuerte Lluvia	13°C	20:00

Número monitoreo	Fecha	Clima	Temperatura ⁰ C	Hora
6	25/04/2022	Parcialmente nublado	13°C	08:39
7	03/05/2022	Nublado	14 ⁰ C	08:52
8	10/05/2022	Parcialmente nublado	13°C	07:45
9	16/05/2022	Lluvioso	12°C	07:43
10	24/05/2022	Nublado	12°C	07:38
11	30/05/2022	Soleado	16 ⁰ C	10:25

Ciertas condiciones ambientales pueden alterar la calidad del agua, por ejemplo, la temperatura influye en los valores de pH, conteo de coliformes, etc., las condiciones climatológicas, fuertes lluvias, modifican la composición del afluente a la planta, bien sea por una mayor escorrentía superficial o por un efecto de dilución, lo que no permite confiar en los resultados obtenidos en esos días.

Ilustración 4.6a. Toma de muestra a la entrada de la planta (P1) en canaleta Parshall Fuente: Autor

Ilustración 4.6b. Muestreo después de la floculación (P2) Fuente: Autor

Ilustración 4.6c. Captación de a la salida de la planta (P3) Fuente: Autor

4.2. Determinación de los parámetros de calidad de agua cruda, a la salida del tanque de floculación y en la descarga al reservorio bajo diferentes condiciones temporales.

Luego de tomar las muestras, se procedió a realizar la caracterización físico-química y bacteriológica de cada una de ellas, como se mencionó en el capítulo anterior, algunas fueron analizadas en el laboratorio y otras in situ, a continuación, se muestran los valores

obtenidos en las mediciones.

4.2.1. Sólidos suspendidos totales

En las ilustraciones 4.7a; 4.7b y 4.7c, se muestran los equipos empleados para la determinación de sólidos suspendidos totales y el tratamiento que se le dio a las cápsulas de porcelana hasta obtener un peso constante, a fin de que esto no se convierta en una interferencia al momento de determinar los SST.

Ilustración 4.7a. Equipo para determinar SST Fuente: Autor

Ilustración 4.7b Desecador para cápsulas de SST Fuente: Autor

Ilustración 4.7c Cápsulas de porcelana + filtro ensayo de SST Fuente: Autor

A los valores obtenidos en los ensayos se les calculó la media y la desviación estándar, en el entendido de que: la media: Es el promedio de los monitoreos y la desviación (SD) es la dispersión entre cualquiera de los resultados del monitoreo y el valor medio (Lòpez, 2017). Es por ello, que los resultados de la desviación típica, son indicativos qué tan dispersos están los valores obtenidos con respecto a la media. Una buena medida rutinaria es que: criterio 1, el 68% de los resultados se encuentren a no más de una desviación estándar de la media; criterio 2, el 95% no sea mayor de 2 desviaciones típicas y criterio 3, el 99.7% se concentren en no más de tres desviaciones estándar (Minitab, 2022).

Tabla 4.2. Sólidos suspendidos totales

	I	PESO INICIA	L		PESO FINAL	,	VOLUMEN		SST g/ml			SST mg/L	
Número monitoreo	Entrada (P1)	Después de la floculación (P2)	Salida (P3)	Entrada (P1)	Después de la floculación (P2)	Salida (P3)	(ml)	Entrada (P1)	Después de la floculación (P2)	Salida (P3)	Entrada (P1)	Después de la floculación (P2)	Salida (P3)
1	44,5785	43,7255	46,1149	44,5794	43,7261	46,1150	50,00	0,0000180	0,0000120	0,0000020	18,00	12,00	2,00
2	46,1367	43,7461	44,5999	46,1369	43,7472	44,6001	20,00	0,0000100	0,0000550	0,0000100	10,00	55,00	10,00
3	44,8700	47,3200	41,9100	44,8700	47,3200	41,9100	20,00	0,0000000	0,0000000	0,0000000	0,00	0,00	0,00
4	43,7879	46,1639	44,6466	43,7890	46,1671	44,6481	20,00	0,0000550	0,0001600	0,0000750	55,00	160,00	75,00
5	43,6530	46,0180	47,1500	43,6650	46,0180	47,1500	20,00	0,0006000	0,0000000	0,0000000	600,00	0,00	0,00
6	47,1080	43,5840	41,0430	47,1110	43,5870	41,0460	20,00	0,0001500	0,0001500	0,0001500	150,00	150,00	150,00
7	44,4300	45,9610	46,2320	44,4330	45,9640	46,2330	20,00	0,0001500	0,0001500	0,0000500	150,00	150,00	50,00
8	44,4350	28,9720	45,9660	44,4350	28,9720	45,9660	20,00	0,0000000	0,0000000	0,0000000	0,00	0,00	0,00
9	43,5770	50,6720	44,6540	43,5820	50,6760	44,6560	20,00	0,0002500	0,0002000	0,0001000	250,00	200,00	100,00
10	45,9620	44,4310	41,7250	45,9630	44,4350	41,7290	50,00	0,0000200	0,0000800	0,0000800	20,00	80,00	80,00
11	45,9580	44,4270	41,7260	45,9610	44,4290	41,7270	50,00	0,0000600	0,0000400	0,0000200	60,00	40,00	20,00

Con un valor promedio de SST en el P3, es de 44.27 mg/L y una SD de 48.58, al comparar con la primera condición: 44.27 + 48.58 = 92.85, en este caso los valores que la superan representan el 18% < 68%. Indicativo de una baja dispersión de los datos respecto a la media. El mismo análisis se aplicó para los resultados obtenidos en cada parámetro

4.2.2. Sólidos disueltos totales

Ilustración 4.8. Equipo para medir Sólidos disueltos totales

Fuente: Autor

El equipo mostrado en la ilustración 4.8, fue un dispositivo de campo utilizado para la determinación de sólidos disueltos totales.

Tabla 4.3. Sólidos disueltos totales

Sólidos Disueltos Totales (ppm)									
Entrada (P1)	Después de la floculación (P2)	Salida (P3)							
78	83	88							
90	93	91							
84	75	75							
79	81	80							
21	64	68							

Sólidos Disueltos Totales (ppm)

Entrada (P1)	Después de la floculación (P2)	Salida (P3)
56	59	62
58	64	61
118	68	69
57	55	54
76	56	56
270	65	160

Fuente: Autor

Para los SDT en el punto de recolección 3, se obtuvo una media de 79 ppm, con desviación estándar de 28,26. Comparado con el criterio 1; 79 + 28.26 = 107.26. Se puede ver en la tabla 4.3 que solo 1 valor lo supera, siendo esto un 9% < 68%, lo que significa una dispersión no significativa en los resultados.

4.2.3. Acidez

Ilustración 4.9. Acidez

Fuente: Autor

El cambio de color en la muestra una vez que se le han añadido los reactivos (naranja de metilo y fenolftaleína) se indica en la ilustración 4.9

Tabla 4.4. Acidez

	Acio	lez a P(volu	men)	Acido	ez a M (volu	men)	Volumen	Acidez	a P (ppm C	aCO3)	Acidez	a M (ppm (CaCO3)	Acio	dez P+M (p CaCO3)	pm
Número monitoreo	Entrada (P1)	Después de la floculación (P2)	Salida (P3)	Entrada (P1)	Después de la floculación (P2)	Salida (P3)	(ml)	Entrada (P1)	Después de la floculación (P2)	Salida (P3)	Entrada (P1)	Después de la floculación (P2)	Salida (P3)	Entrada (P1)	Después de la floculación (P2)	Salida (P3)
1	0,4	0,3	0,5	11,5	13	16		4	3	5	115	130	160	119	133	165
2	0,6	0,5	0,6	0	0	0		6	5	6	0	0	0	6	5	6
3	0,5	0,6	0,4	18,5	18	4		5	6	4	185	180	40	190	186	44
4	1,5	0,5	0,9	10	10	15		15	5	9	100	100	150	115	105	159
5	0	1,2	0,9	0	5,8	0		0	12	9	0	58	0	0	70	9
6	1,1	2	0,7	0	0	0	100	11	20	7	0	0	0	11	20	7
7	1,1	0,6	0,8	0	0	0		11	6	8	0	0	0	11	6	8
8	1,1	0,9	0,7	0	0	0		11	9	7	0	0	0	11	9	7
9	0,5	0,6	0,7	0	0	0		5	6	7	0	0	0	5	6	7
10	1,4	1	0,5	0	0	0		14	10	5	0	0	0	14	10	5
11	1	0,5	0,8	0	0	0		10	5	8	0	0	0	10	5	8

La media de la acidez en el P3, es de 38.63 ppm como CaCO3 y una SD de 59.11, la primera condición tiene como resultante: 38.63 + 59.11 = 97.74, los resultados que la superan representan el 18% < 68%. Esto muestra una baja dispersión en los valores respecto a la media.

4.2.4. Alcalinidad

Ilustración 4.10. Alcalinidad a fenolftaleína y naranja de metilo

Fuente: Autor

En esta ilustración 4.10, se ve claramente en cada vaso de precipitado la coloración que presenta cada muestra una vez que se le han adicionado los indicadores naranja de metilo y fenolftaleína

Tabla 4.5. Alcalinidad

	Alcalinidad a			Alcal	linidad a P	(ppm	Alcal	inidad a M()	ppm	Alcalinidad P+M (ppm						
	I	P(volumen)		Alcalin	idad a M (v	olumen)	Volumen		CaCO3)			CaCO3)			CaCO3)	
		Después			Después de				Después			Después de			Después	
Número	Entrada	de la	Salida	Entrada	la	Salida	(ml)	Entrada	de la	Salida	Entrada	la	Salida	Entrada	de la	Salida
monitoreo	(P1)	floculación (P2)	(P3)	(P1)	floculación (P2)	(P3)	(IIII)	(P1)	floculación (P2)	(P3)	(P1)	floculación (P2)	(P3)	(P1)	floculación (P2)	(P3)
1	0	0	0	0,5	0,7	0,9		0	0	0	5	7	9	5	7	9
2	0	0	0	1	2,4	1,7		0	0	0	10	24	17	10	24	17
3	0	0	0	0,8	0,6	0,7		0	0	0	8	6	7	8	6	7
4	0,5	0	0	0,5	1	0,7		5	0	0	5	10	7	10	10	7
5	0	0	0	2	1	0,7		0	0	0	20	10	7	20	10	7
6	0	0	0	1,5	0,5	0,7	100	0	0	0	15	5	7	15	5	7
7	0	0	0	1	0,9	0,7		0	0	0	10	9	7	10	9	7
8	0	0	0	1	0,7	0,5		0	0	0	10	7	5	10	7	5
9	0	0	0	2	0,5	0,5		0	0	0	20	5	5	20	5	5
10	0	0	0	1	0,5	0,8		0	0	0	10	5	8	10	5	8
11	0,8	0	0	0,4	1	0,9		8	0	0	4	10	9	12	10	9

En lo que respecta a la alcalinidad, el valor medio fue de 8 ppm como $CaCO_3$ y la SD de 3,10, aplicando la condición 1: 8 + 3,10 = 11,10, se puede visualizar que solo un caso es mayor y este representa el 9% < 68%, asimismo significa una dispersión baja.

4.2.5. Dureza

Ilustración 4.11. Dureza total

Fuente: Autor

La ilustración 4.11, permite observar los vires obtenidos para cada una de las muestras en los puntos 1, 2 y 3. Es decir, los sitios seleccionados para la recolección de las muestras que fueron analizadas.

Tabla 4.6. Dureza

Dureza (volumen)				Volumen		Dureza (ppm CaCO3)		
		Después de						
Número	Entrada	la	Salida	(m1)	Entrada		Salida (D2)	
monitoreo	(P1)	floculación	(P3)	(ml)	(P1)	Después de la	Salida (P3)	
		(P2)				floculación (P2)		
1	5,1	5,5	5,3		51	55	53	
2	7,5	6,9	7		75	69	70	
3	5,5	5,6	6,6		55	56	66	
4	6,8	4,5	6,5		68	45	65	
5	0	5	6		0	50	60	
6	4	5	5	100	40	50	50	
7	8,5	6	4,5		85	60	45	
8	6,4	6	5,4		64	60	54	
9	6	7	3,5		60	70	35	
10	4	4	4		40	40	40	
11	4,5	4	4,6		45	40	46	

Fuente: Autor

Para la dureza el promedio fue de 53.09 ppm como CaCO₃ y la desviación típica de 10.73, en este caso 53.09+10.73=63.62, tres (03) cuantificaciones dieron por encima de 63.62, significando el 27% < 68%, lo que se traduce en un valor bajo de dispersión.

4.2.6. Conductividad

Tabla 4.7. Conductividad

Conductividad µS/cm								
Número monitoreo	Entrada (P1)	Después de la floculación (P2)	Salida (P3)					
1	160,9	149,1	145,2					
2	116,6	173,9	174,3					
3	143,7	146,4	145,8					
4	154,2	154,4	151,2					
5	29,4	0	0					
6	101,4	107,9	116,9					
7	110,9	117,8	118,5					
8	120	127,5	128,3					
9	93,9	98,6	98,2					
10	100,9	104,7	105,1					
11	117,3	107,7	109,7					

Fuente: Autor

La media obtenida para la conductividad fue de 117.56 μ S/cm, con una SD de 43.11, para el criterio 1, 117.56 +43.11 = 160.67, solo una medición dio por encima del valor indicado por la condición, significando el 9% < 68%, lo que representa una dispersión baja.

4.2.7. pH

Tabla 4.8. pH

рН								
Número monitoreo	Entrada (P1)	Después de la floculación (P2)	Salida (P3)					
1	7,47	7,34	7,11					
2	7,97	7,41	7,37					
3	8,04	7,83	7,46					
4	8,87	7,62	7,26					
5	7,01	6,54	6,91					
6	7,79	6,98	6,69					
7	7,68	6,99	7,01					
8	8,07	7,04	7,08					
9	8,01	6,94	6,76					
10	6,81	6,35	6,36					
11	7,6	6,36	6,32					

Fuente: Autor

Los resultados del parámetro pH, tienen un valor medio de 6.93 y una desviación estándar de 0.36, este valor es prácticamente despreciable y es el indicador con menor dispersión en los valores obtenidos.

4.2.8. Oxígeno disuelto

Tabla 4.9. Oxígeno disuelto

Oxígeno disuelto mg/L								
Número monitoreo	Entrada (P1)	Después de la floculación (P2)	Salida (P3)					
1	9,58	9,32	8,46					
2	9,13	9,6	8,4					
3	8,4	9,31	8,43					
4	8,49	9,97	8,72					
5	8,57	0	0					
6	11,38	10,32	8,79					
7	8,33	9,95	8,74					
8	11,4	10,31	8,7					
9	9,31	9,8	8,8					
10	9,26	10,27	8,78					
11	10,5	9,72	9,03					

Fuente: Autor

Con respecto al oxígeno disuelto, este presenta una media de 7.89 con una SD de 2.5, al aplicar el criterio 1, 7.89+2.5 = 10.39. Se visualiza que el porcentaje es 0% ya que ningún valor supera a 10.39, es decir que acepción del monitoreo número 5, los resultados son muy cercanos a la media.

4.2.9. Color aparente

Tabla 4.10. Color aparente

Color Aparente Pt-Co								
Número monitoreo	Entrada (P1)	Después de la floculación (P2)	Salida (P3)					
1	17	14	5					
2	4	3	0					
3	17	33	16					
4	24	14	11					
5	Por encima del rango	3	0					

Color Aparente Pt-Co								
Número monitoreo	Entrada (P1)	Después de la floculación (P2)	Salida (P3)					
6	37	26	4					
7	3	10	0					
8	43	10	0					
9	52	40	1					
10	21	26	13					
11	18	4	0					

En relación con el Color Aparente Pt-Co, el valor promedio se ubica en 4.54 y la desviación estándar en 5.72, aplicando el primer criterio 4.54+5.72 = 10.29, se observa que 3 resultados superan lo establecido por la condición, esto representa el 27% < 68%, lo que señala una dispersión baja.

4.2.10. Turbidez

Tabla 4.11. Turbidez.

	Turbiedad (NTU)								
Número monitoreo	Entrada (P1)	Después de la floculación (P2)	Salida (P3)						
1	5,23	1,83	0,54						
2	1,36	2,2	0,91						
3	1,98	2,39	1,23						
4	1,6	1,5	0,96						
5	Rango superado más de 800	1,3	0,29						
6	7,25	9,65	0,95						
7	13,1	1,79	1,57						
8	1,99	3,56	1,32						
9	7,86	7,44	1,75						
10	2,76	3,37	0,56						
11	6,34	1,75	0,28						

Fuente: Autor

Igualmente se procedió con los valores de turbiedad, obteniendo una media de 0.94 NTU, con una SD de 0,47, lo que representa (0.94+0.47=1.41) un 18% de valores por encima del criterio 1, mucho menor al 68%, esto es una dispersión baja.

4.2.11. Coliformes

Ilustración 4.12a. Reactivos para coliformes fecales y totales Fuente: Autor

Ilustración 4.12b. Medios preparados para sembrar las muestras Fuente: Autor

Ilustración 4.12c. Siembras con presencia de coliformes Fuente: Autor

En las ilustraciones 4.12 a, b y c, se señalan los reactivos, preparación de medios de cultivo y las muestras que dieron positivas a crecimiento de organismos del grupo coli.

Tabla 4.12. Coliformes fecales

•	Coliformes fecales									
	Núme	ro de resu	ıltados	Núm	Número de resultados			Número de resultados		
	p	ositivos F	P 1]	positivos P2			positivos P3		
Número	P1=	P1=	P1=	P2=	P2=	P2=	P3=	P3=	P3=	
monitoreo	1/10	1/100	1/1000	1/10	1/100	1/1000	1/10	1/100	1/1000	
1	5	2	1	4	3	0	0	0	0	
2	5	5	3	5	3	1	0	0	0	
3	4	0	0	5	0	1	1	0	0	
4	5	1	1	2	1	0	0	0	0	
5	N	o se hizo	coliforme	s debido	a que el	agua estab	a demas	iado turb	ia	
6	5	5	2	5	5	0	0	0	0	
7	4	0	0	4	0	0	0	0	0	
8	4	1	0	2	0	0	0	0	1	
9	5	0	4	5	0	0	0	0	0	
10	1	0	1	4	0	0	0	0	0	
11	5	5	5	5	2	0	0	0	0	

Fuente: Autor

Tabla 4.13. Coliformes totales

-		Coliformes totales								
-	Número de resultados Número de resultados				Número de resultados					
	1	positivos	P1	positivos P2			p	positivos P3		
Número	P1=	P1=	P1=	P2=	P2=	P2=	P3=	P3=	P3=	
monitoreo	1/10	1/100	1/1000	1/10	1/100	1/1000	1/10	1/100	1/1000	
1	5	2	0	5	0	3	0	0	0	

_										
	Coliformes totales									
_	Núm	ero de res	sultados	Núm	Número de resultados			Número de resultados		
	1	positivos	P1	1	ositivos l	P2	p	positivos P3		
Número	P1=	P1=	P1=	P2=	P2=	P2=	P3=	P3=	P3=	
monitoreo	1/10	1/100	1/1000	1/10	1/100	1/1000	1/10	1/100	1/1000	
2	5	5	2	5	4	2	0	0	0	
3	5	2	0	3	2	1	0	0	0	
4	5	4	1	5	3	1	3	0	0	
5	N	lo se hizo	coliforme	s debido	a que el a	agua estab	a demas	siado turl	oia	
6	5	5	3	5	5	4	2	2	4	
7	0	0	0	2	2	1	0	0	0	
8	5	5	0	5	3	2	0	0	0	
9	5	5	5	3	1	0	0	0	0	
10	3	2	1	3	3	2	0	0	0	
11	1	0	0	1	0	0	0	0	0	
				Enganto	. 1					

En los ensayos realizados para determinar la presencia de coliformes fecales y totales, para las diluciones 1/100 que son los valores que contempla la norma, se puede mencionar la ausencia de microorganismos, a excepción del monitoreo 6 cuyo valor fue de 2 nmp/100 ml de muestra, en estos casos se puede replicar el análisis bajo las mismas condiciones climáticas, temperatura y caudal, para así aclarar cualquier duda sobre el resultado, también pudo deberse a problemas con la preservación de la muestra, sin embargo, como es solo 1 de 11 muestras, se puede descartar.

4.2.12. Prueba de Jarras

En este ensayo se implementaran diferentes dosis del polímero en cada jarra, accediendo a la disminución de los coloides en suspensión y materia orgánica a través del proceso de floculación; realizando la simulación de los procesos unitarios de coagulación, floculación y sedimentación, y el ajuste en el pH de las diferentes muestras; donde se podrá determinar la dosis óptima para utilizar en las plantas de tratamiento de agua potable fundamentalmente cuando la calidad del agua oscila rápidamente.

Ilustración 4.13a Químico utilizado para la formación de flóculos Fuente: Autor

Ilustración 4.13b. Equipo de prueba de jarras o Jar test Fuente: Autor

Ilustración 4.13c. Ensayo de prueba de jarras Fuente: Autor

Tabla 4.14. Prueba de Jarra

			Mezcla R	ápida	Mezcla l	Lenta					
Número monitoreo Fecha	Fecha	# recipientes	Revoluciones	Tiempo (minutos)	Revoluciones	Tiempo (minutos)	Dosificación Sulfato de aluminio (%)	Volumen (ml)	Turbiedad inicial NTU		
		R1					0,5	1			
1	05/04/2022	05/04/2022	05/04/2022	R2	250	1	35	30	0,5	1,5	1,16
1	03/04/2022	R3	230	1	33	30	1	1	1,10		
		R4					2	0,5			
		R1					0,5	0,5			
2	10/04/2022	R2	250	1	25	20	0,5	1	2.00		
2	19/04/2022	R3	250	1	35	30	0,5	2	2,89		
		R4		0,5	5						
		R1	R1		0,5	0,5					
2	21/04/2022	R2	250	1	25	20	0,5	1	Más de 800 NTU no marco el turbidímetro		
3	21/04/2022	R3	250	1	35	30	0,5	2			
		R4					0,5	5			
		R1					2	1			
4	26/04/2022	R2	250	1	25	20	2	2	10.2		
4	26/04/2022	R3	250	1	35	30	2	4	10,3		
		R4					2	6			
5	04/05/2022	R1	150	1	30	25	1	1	2 26		
5	04/03/2022	R2	130	1	30	23	1	1,5	3,26		

			Mezcla R	Lápida	Mezcla l	Lenta			
Número monitoreo	Fecha	# recipientes	Revoluciones	Tiempo (minutos)	Revoluciones	Tiempo (minutos)	Dosificación Sulfato de aluminio (%)	Volumen (ml)	Turbiedad inicial NTU
		R3					1	3	
		R4					1	5	
		R1					10	0,5	
6	04/05/2022	R2	200	1	35	25	10	1	4,78
		R3					10	2	
		R4					10	2,5	
		R1					2	1	
7	11/05/2022	R2	150	1	20	20	2	2	2,01
,	11/03/2022	R3	150	•	20	20	2	3	2,01
		R4					2	4	
		R1					1	0,5	
0	15/05/2022	R2	1.50	4	2.5	20	1	1,5	7.06
8	17/05/2022	R3	150	1	25	20	1	3	7,86
		R4					1	4,5	
		R1					20	0,5	
9	17/05/2022	R2	150	1	25	20	20	1,5	7,86
,	1110312022	R3	150	1	23	20	20	3	7,00
		R4					20	4,5	

			Mezcla R	Lápida	Mezcla l	Mezcla Lenta			
Número monitoreo	Fecha	# recipientes	Revoluciones	Tiempo (minutos)	Revoluciones	Tiempo (minutos)	Dosificación Sulfato de aluminio (%)	Volumen (ml)	Turbiedad inicial NTU
		R1					0,5	1,5	
10	24/05/2022	R2	120	1	30	15	0,5	3	3,24
10	24/03/2022	R3	120	1	30	13	0,5	4,5	5,24
		R4					0,5	6	
		R1					1	1,5	
11	24/05/2022	R2	120	1	30	15	1	3	2.24
11	24/05/2022	R3	120	1	30	30 13	1	4,5	3,24
		R4					1	6	
		R1					0,5	0,5	
10	20/05/2022	R2	120		•	20	0,5	1	1,81
12	30/05/2022	R3	120	1	20	20	0,5	1,5	
		R4					0,5	2	
		R1					0,75	0,5	
		R2	4.00		20	• •	0,75	1	1,81
13	30/05/2022	R3	120	1		20	0,75	1,5	
		R4					0,75	2	

4.3. Alternativas que permiten mejorar los procesos de potabilización aplicados a la PTAP de Cachiyacu.

Los resultados de cada uno de los análisis fueron comparados con los valores establecidos en las normas NTE INEN 1108 "Agua Potable. Requisitos" Quinta revisión y la CPE INEN 5 Parte 9-1:1992 "Normas para Estudio y Diseño de Sistemas de Agua Potable y Disposición de Aguas Residuales para poblaciones mayores a 1000 Habitantes" Primera Edición, cabe resaltar que existen parámetros que no tienen límites permisibles con los que se pueda comparar.

4.3.1. Sólidos totales

Tabla 4.15. Resultados sólidos totales vs valores norma

Sólidos	Disueltos T (ppm)	otales	Sólidos	Sólidos Suspendidos totales mg/L		Sólidos Totales (mg/L)			entración má ida 1500 (mg		
	Después			Después			Después		_	Después	
Entrada	de la	Salida	Entrada	de la	Salida	Entrada	de la	Salida	Entrada	de la	Salida
(P1)	floculación	(P3)	(P1)	floculación	(P3)	(P1)	floculación	(P3)	(P1)	floculación	(P3)
	(P2)			(P2)			(P2)			(P2)	
78	83	88	18,00	12,00	2,00	96,00	95,00	90,00			
90	93	91	10,00	55,00	10,00	100,00	148,00	101,00			
84	75	75	0,00	0,00	0,00	84,00	75,00	75,00			
79	81	80	55,00	160,00	75,00	134,00	241,00	155,00			
21	64	68	600,00	0,00	0,00	621,00	64,00	68,00			
56	59	62	150,00	150,00	150,00	206,00	209,00	212,00	Todos l	os valores cu	mplen
58	64	61	150,00	150,00	50,00	208,00	214,00	111,00			
118	68	69	0,00	0,00	0,00	118,00	68,00	69,00			
57	55	54	250,00	200,00	100,00	307,00	255,00	154,00			
76	56	56	20,00	80,00	80,00	96,00	136,00	136,00			
270	65	160	60,00	40,00	20,00	330,00	105,00	180,00			

^{* (}INEN, 2012)

Fuente: Autor

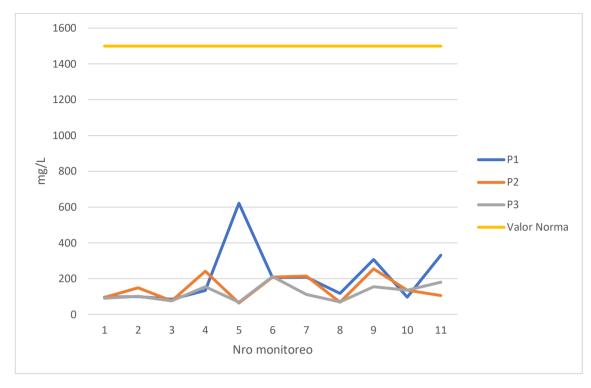


Ilustración 4.14. Resultados sólidos totales vs valor normativo Fuente: Autor

Como se puede observar, ninguno de los resultados obtenidos supera el valor establecido por la norma, la variación mayor se presenta en el agua cruda, a la entrada de la PTAP identificada con P1, esto era de esperar ya que en ese punto el agua no ha recibido ningún tipo de tratamiento.

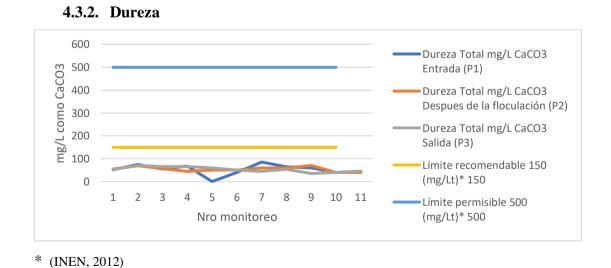


Ilustración 4.15. Resultados dureza total vs valor normativo Fuente: Autor

Para la dureza total, todos los valores obtenidos se mantienen por debajo del límite permisible (500 mg/L como CaCo₃), inclusive estos son menores que los del límite recomendable (150 mg/L como CaCo₃), llama la atención de que el monitoreo número 5, el valor es completamente atípico con respecto a las demás semanas, este día se presentó una fuerte lluvia por lo que el investigador atribuye esta variación a las condiciones climatológicas.

рН 10 9 6 ■ Entrada (P1) Hd 5 ■ Despues de la floculación (P2) ■ Salida (P3) 4 Límite permisible mínimo 3 ■ Límite permisible máximo 2 1 Nro monitoreo

4.3.3. pH

Ilustración 4.16. Resultados pH vs rango de límite permisible Fuente: Autor

En lo referente a los valores de pH, la muestra de agua cruda (P1) captada en la semana 4, excedió el límite permisible de 8,5, mientras que las muestras tomadas en P2 y P3 mostraron valores por debajo de lo establecido (6,5) en la (INEN, 2012), siendo el valor más bajo 6,32. En este caso, no es atribuible a las condiciones ambientales, por lo que se procedió a revisar el % de disminución del pH con respecto al valor obtenido a la entrada de la planta.

^{* (}INEN, 2012)

Tabla 4.16. Porcentaje de variación de pH

Temperatura ⁰ C	pH Entrada (P1)	pH Salida (P3)	% de variación
17^{0} C	7,47	7,11	4,82
16^{0} C	7,97	7,37	7,53
16^{0} C	8,04	7,46	7,21
13°C	8,87	7,26	18,15
13°C	7,01	6,91	1,43
13°C	7,79	6,69	14,12
14 ⁰ C	7,68	7,01	8,72
13°C	8,07	7,08	12,27
12°C	8,01	6,76	15,61
12°C	6,81	6,36	6,61
16 ⁰ C	7,6	6,32	16,84

De estas variaciones se puede inferir, que la disminución del valor del pH, pudo deberse a un incremento de la temperatura, ya que esto provoca la propensión a que el oxígeno y el hidrógeno se separen.

4.3.4. Oxígeno disuelto

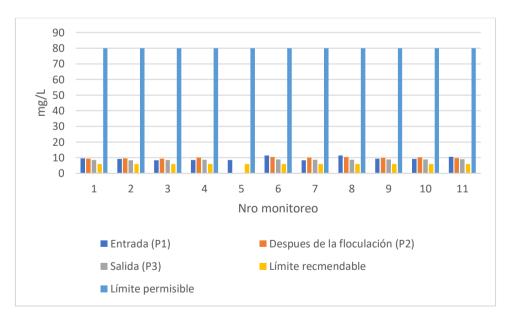


Ilustración 4.17. Valores de Oxígeno disuelto vs Límite normativos

Fuente: Autor

Se puede percibir nuevamente la influencia de la fuerte lluvia en el monitoreo número 5 de este parámetro, además, a pesar de que a excepción de esa semana todos los valores

superan el límite recomendable (6 mg/L), no así el límite permisible (80 mg/L), de igual manera es un factor a considerar.

60 50 Entrada (P1) Jnidades de color aparente(Pt-Co) 40 30 Despues de la floculación (P2) 20 10 Salida (P3) 0 3 5 6 8 10 Nro monitoreo

4.3.5. Color aparente

Ilustración 4.18. Unidades de color aparente vs Límite máximo permitido Fuente: Autor

Fuera de las muestras tomadas a la salida de la planta, todas las demás muestras exceden el límite máximo permitido (15 unidades de color aparente Pt-Co) establecido por la (NTE INEN 1108, 2020), sin embargo, la INEN (2012) indica como límite recomendable (5 UCV Pt-Co), es por esto que como alternativa se propone realizar una evaluación de la dosis de sulfato de aluminio que actualmente se está utilizando en el proceso de potabilización.

15 10 NTO 0 3 4 6 8 9 11 10 Nro de monitoreo Entrada (P1) Despues de la floculación (P2) Salida (P3) Límte máximo permitido* NTU

4.3.6. Turbiedad

Ilustración 4.19. NTU vs Límite máximo permitido Fuente: Autor

^{* (}NTE INEN 1108, 2020)

^{* (}NTE INEN 1108, 2020)

En los ensayos realizados los valores resultantes señalan que en la mayoría de las muestras la turbiedad iba disminuyendo a través de la trayectoria del tratamiento, en la ilustración 4.34, se visualiza como todos los valores de este parámetro en el P3, cumple con lo establecido en la norma, 5 NTU, (NTE INEN 1108, 2020).

La evaluación del gradiente del floculador hidráulico de flujo horizontal, se muestra en el anexo 11

6 5 NMP/100 ml 0 2 3 5 9 4 6 8 10 11 Nro de monitoreo P1= 1/100 P2= 1/100 P3= 1/100

4.3.7. Coliformes Totales

Ilustración 4.20. NMP/100 ml vs Máximo

Fuente: Autor

Lo primero que se destaca en la ilustración es la falta de datos en el monitoreo número 5, una vez más se puede mostrar la interferencia causada por la fuerte lluvia que se presentó ese día, en referencia a los demás monitoreos, estos cumplen con lo establecido en la norma <1,1 NMP/100 ml (NTE INEN 1108, 2020), se ve como se está obteniendo una desinfección efectiva en la PTAP.

Para dar cumplimiento a este objetivo, se evaluó la dosificación óptima de Sulfato de aluminio Al₂(SO₄)₃ o de Cloruro férrico FeCl₃ que se debe utilizar en la planta para adecuar las características del agua para consumo, para ello, se realizaron pruebas de jarra y sus resultados se muestran a continuación en las tablas 4-16 y 4-17.

^{* (}NTE INEN 1108, 2020)

Tabla 4.17. Resultados prueba de jarra con $Al_2(SO_4)_3$

Número monitoreo	# recipientes	Dosificación Sulfato de aluminio (%)	Volumen (ml)	Turbiedad inicial NTU	Turbiedad final NTU	% Remoción	Volumen de muestra (ml)
	R1	0,5	1		0,99	14,66	
1	R2	0,5	1,5	1,16	0,7	39,66	800
1	R3	1	1	1,10	0,95	18,10	800
	R4	2	0,5		1,06	8,62	
	R1	0,5	0,5		1,8	37,72	
2	R2	0,5	1	2,89	1,77	38,75	800
2	R3	0,5	2	2,89	1,6	44,64	800
	R4	0,5	5		1,13	60,90	
	R1	0,5	0,5			NO	
3	R2	0,5	1	Mas de 800 NTU no marco		NO	800
3	R3	0,5	2	el turbidímetro	789	NO	800
	R4	0,5	5		197	NO	
	R1	2	1		6,54	36,50	
4	R2	2	2	10.2	1,02	90,10	000
4	R3	2	4	10,3	10,1	1,94	800
	R4	2	6		8,18	20,58	
	R1	1	1		1,41	56,75	
5	R2	1	1,5	3,26	1,06	67,48	800
3	R3	1	3	3,20	4,57	-40,18	800
	R4	1	5		6,01	-84,36	
	R1	10	0,5		2,63	44,98	
6	R2	10	1	4,78	2,1	56,07	800
U	R3	10	2	4,70	1,09	77,20	800
	R4	10	2,5		1,33	72,18	
	R1	2	1		0,57	71,64	
7	R2	2	2	2,01	0,65	67,66	800
,	R3	2	3	۷,01	0,85	57,71	000
	R4	2	4		0,69	65,67	
	R1	1	0,5		6	23,66	
8	R2	1	1,5	7,86	0,45	94,27	800
	R3	1	3		0,19	97,58	

Número monitoreo	# recipientes	Dosificación Sulfato de aluminio (%)	Volumen (ml)	Turbiedad inicial NTU	Turbiedad final NTU	% Remoción	Volumen de muestra (ml)
	R4	1	4,5		0,42	94,66	
	R1	20	0,5		0,98	87,53	
9	R2	20	1,5	7,86	2,89	63,23	800
9	R3	20	3	7,80	3,65	53,56	800
	R4	20	4,5		2,2	72,01	
	R1	0,5	1,5		3,5	-8,02	
10	R2	0,5	3	2.24	1,87	42,28	800
10	R3	0,5	4,5	3,24	3,26	-0,62	800
	R4	0,5	6		0,81	75,00	
	R1	1	1,5		2,55	21,30	
1.1	R2	1	3	2.24	1,16	64,20	900
11	R3	1	4,5	3,24	5,92	-82,72	800
	R4	1	6		6,74	-108,02	
	R1	0,5	0,5		1,5	17,13	
10	R2	0,5	1	4.04	1,51	16,57	000
12	R3	0,5	1,5	1,81	1,8	0,55	800
	R4	0,5	2		1,9	-4,97	
	R1	0,75	0,5		1,5	17,13	
13	R2	0,75	1	1,81	1,7	6,08	800
13	R3	0,75	1,5	1,01	2	-10,50	000
	R4	0,75	2		2,2	-21,55	

Fuente: Autor

Resulta interesante observar como una mayor adición de polímero no garantiza una mejor clarificación, como se puede visualizar en varios de los resultados de la Tabla 4.17, donde en algunos monitoreos se obtuvieron valores más elevados de turbidez, al incrementar el % de sulfato de aluminio. No siempre la dosis más alta brinda el mejor resultado.

Tabla 4.18. Resultados prueba de jarra con FeCl₃

Número monitoreo	# recipientes	Volumen Cloruro Férrico (ml)	Turbiedad inicial NTU	Turbiedad final NTU	% Remoción	Volumen de muestra (ml)
1	R1	1	2,89	0,71	75,43	600

Fuente: Autor

100
80
40
90
10
20
30
40
50
60
-20

Turbiedad final NTU
% Remoción

Ilustración 4.21. % remoción prueba de jarra con Al2(SO4)3

Fuente: Autor

12
10
8
6
4
2
0
1 2 4 5 6 7 8 9 10 11 12 13

Turbiedad Inicial NTU Dosificación (ml) Turbiedad final NTU

Ilustración 4.22. Turbiedad vs Dosificación Al2(SO4)3

Fuente: Autor

En la planta de tratamiento se realiza la mezcla rápida a 50 rev/min en un tiempo de 10 minutos y la mezcla lenta (ver Ilustración 4.22) a 25 rev/min, en el ensayo se utilizó 1

min y velocidades de 120; 150 y 250 rev/min, para la mezcla rápida y para la mezcla lenta tiempos de (30; 25; 20 y 15 min) con velocidades de 35; 30; 25 y 20 rev/min, como se mostró en la tabla 4-13, con el sulfato de aluminio $Al_2(SO_4)_3$, y para la prueba con cloruro férrico el tiempo fue de 1 min a 250 rev/min en la mezcla rápida y en la lenta de 30 min a velocidad de 35 rev/min, es importante mencionar que por el resultado obtenido se decidió trabajar con $Al_2(SO_4)_3$, por ser más económico y brindar mayores % de remoción.

Al utilizar las diferentes dosis de sulfato de aluminio y compararlas con él % de remoción de turbiedad se puede observar, que no siempre la dosis más elevada del aditivo proporciona una mayor disminución de esta, inclusive a dosis elevadas los valores de este parámetro se pueden incrementar, por lo que la alternativa seleccionada como dosis óptima es del 1%, correspondiente al nro. de monitoreo 8, con 25 rev/min y un tiempo de 20 min. Ya que admite un % de remoción medio del 95,50% y el valor de turbidez más elevado de los obtenidos fue de 13.1, al remover ese porcentaje el valor después del tanque de floculación sería: 13.1 – (13.1*0.955) = 0.59 NTU, por debajo del límite máximo permitido de 5 NTU ver ilustración 4.22.

Ilustración 4.22. Preparación en planta del Al₂(SO₄)₃ Fuente: Autor

Tabla 4.19. Resumen de resultados

	Turbied	lad (N	TU)	Color Apa	rente l	Pt-Co	I	Sólidos Disuelto ales (pp	S	Su	Sólidos spendic ales mg	dos		reza T m Ca(Colifor	nes Totales	NMP/100
Número monitoreo	(P1)	(P2)	(P3)	(P1)	(P2)	(P3)	(P1)	(P2)	(P3)	(P1)	(P2)	(P3)	(P1)	(P2)	(P3)	P1= 1/100	P2= 1/100	P3= 1/100
1	5,23	1,83	0,54	17	14	5	78	83	88	18	12	2	51	55	53	2	0	0
2	1,36	2,2	0,91	4	3	0	90	93	91	10	55	10	75	69	70	5	4	0
3	1,98	2,39	1,23	17	33	16	84	75	75	0	0	0	55	56	66	2	2	0
4	1,6	1,5	0,96	24	14	11	79	81	80	55	160	75	68	45	65	4	3	0
5	Rango superado más de 800	1,3	0,29	Por encima del rango	3	0	21	64	68	600	0	0	0	50	60		e tomó muest ensidad de la	
6	7,25	9,65	0,95	37	26	4	56	59	62	150	150	150	40	50	50	5	5	2
7	13,1	1,79	1,57	3	10	0	58	64	61	150	150	50	85	60	45	0	2	0
8	1,99	3,56	1,32	43	10	0	118	68	69	0	0	0	64	60	54	5	3	0
9	7,86	7,44	1,75	52	40	1	57	55	54	250	200	100	60	70	35	5	1	0
10	2,76	3,37	0,56	21	26	13	76	56	56	20	80	80	40	40	40	2	3	0
11	6,34	1,75	0,28	18	4	0	270	65	160	60	40	20	45	40	46	0	0	0

P1= entrada a la planta

P2= después de la floculación

P3= salida la tanque de reserva

Fuente: Autor

4.3.8. Revisión de los procesos de la planta

La planta presenta un sistema de captación de la quebrada del Chorro blanco, donde la tubería de conducción presenta una longitud de 15.0 km, se clasifica como una planta de tratamiento de tipo convencional (Filtración Rápida) en el 2010 se ajusta sus instalaciones para trabajar con un caudal de 12,6 lts/seg; pero en la actualidad sus operaciones se realizan para un caudal de 20 lts/seg, el sistema presenta dos reservorios de 600 y 200 m3 de capacidad y red de distribución que abastece a los usuarios de la Parte Alta y centro de la ciudad. Para revisar los procesos vamos a rediseñar el desarenador, el sedimentador y la cloración para los caudales de diseños como se muestra en la tabla 4.20 y 4.21 respectivamente. En la comparación de estos diseños se puede ver que auge la planta se encuentra diseñada para operar a 45m³/H se encuentra operando a 72m³/H lo que hace imposible cumplir los tiempos de retención en el proceso de sedimentación y cloración. En el proceso de sedimentación se trabaja con un tiempo de retención de 3600 segundos en un área de 29.07m² cuando para un caudal de 20 lts/seg la sección de retención debería ser de 42.15m² presentando una producción de lodos de 161,74 Kg/día; mientras que el diseño se encontraba sujeto a 101,89 Kg/día, al ser el volumen de lodos mucho mayor que el proyectado para las dimensiones actuales de la planta se provoca que el proceso de floculación no sea efectivo. En el proceso de cloración se sucede algo muy similar ya que para el tiempo de retención de 1800 segundos se requiere un tanque de 36m³ y se presenta una estructura de 22.68m³; donde no se cumple con los parámetros de diseño.

Tabla 4.20. Rediseño para un caudal de 12.6lts/seg

Cálculo del de	sarenador		
Caudal de diseño	0,0126	m3/s	
Proponiendo velocidad	0,25	m/s	
Área del canal	0,0504	m2	
Proponiendo base canal	0,22449944	m	
Base de canal	0,25	m	
Proponiendo tirante	0,2016	m	
Tirante	0,2	m	
Proponiendo bordo libre	0,04	m	
Bordo libre	0,05	m	
Cálculo de tanqu	e sedimentador		
Caudal diseño	0,0126	m3/s	
DBO	180	mg/lt	

Velocidad	0,25	m/s		
Tiempo	3600	seg		
volumen del	tanque			
Volumen del tanque	45,36	m3		
Área superficial	29,0769231	m2		
Tirante	1,56	m		
Diámetro	6,08456147	m		
Cálculo de volum	en de lodos			
DBO	0,18	kg/m3		
Rugosidad	0,52			
Caudal	0,0126	m3/s		
Densidad del agua	1000	kg/m3		
Gravedad esp. De lodos	1,03	m/s2		
Porcentaje de solidos	0,06	%		
Masa de solidos	101,896704	kg/día		
Volumen de solidos	1,64881398	m3		
Tirante de lodo	0,05670524	m		
Altura de la rastra	0,24338246	m		
Altura del tanque	3,36338246	m		
Potencia del motor	0,31265509	hp		
Clora	ción			
Caudal	0,0126	m3/s	45	m3/h
Eficiencia	99,8	%		
Tiempo de retención	1800	seg		
Volumen	22,68	m3		
Proponiendo altura	2	m		
Área superficial	11,34	m2		
Dimensiones				
Ancho	1,94422221	m		
Largo	5,83266663	m		
proponiendo man	nparas a cada 60c	em		
Numero de mamparas	9,72111105	u		

Fuente: Autor

Tabla 4.21. Rediseño para un caudal de 20lts/seg

Calculo del d	esarenador	
Caudal de diseño	0,02	m3/s
Proponiendo velocidad	0,25	m/s
Área del canal	0,08	m2
Proponiendo base canal	0,28284271	m
Base de canal	0,3	m

65

Proponiendo tirante	0,26666667	m			
Tirante	0,3	m			
Proponiendo bordo libre	0,06	m			
Bordo libre	0,06	m			
Cálcula da tangu	o godimento don				
Cálculo de tanqu Caudal diseño	0,02	m3/s			
DBO					
	180	mg/lt			
Velocidad	0,25	m/s			
Tiempo	3600	seg			
Volumen d	el tanque				
Volumen del tanque	72	m3			
Área superficial	46,1538462	m2			
Tirante	1,56	m			
Diámetro	7,6658269	m			
Cálculo de volu	men de lodos				
DBO	0,18	kg/m3			
Rugosidad	0,52				
Caudal	0,02	m3/s			
Densidad del agua	1000	kg/m3			
Gravedad esp. De lodos	1,03	m/s2			
Porcentaje de solidos	0,06	%			
Masa de solidos	161,7408	kg/día			
Volumen de solidos	2,61716505	m3			
Tirante de lodo	0,05670524	m			
Altura de la rastra	0,30663308	m			
Altura del tanque	3,42663308	m			
Potencia del motor	0,49627792	hp			
	·, ·, ·, ·				
Clo	oración				
Caudal	0,02	M3/s	72	m3/h	
Eficiencia	99,8	%			
Tiempo de retención	1800	Seg			
Volumen	36	M3			
Proponiendo altura	2	M			
Área superficial	18	M2			
Dimensiones	10	1412			
Ancho	2,44948974	M			
Largo	7,34846923	M			
· ·	1,34640923 namparas a cada 6				
Numero de mamparas	12,2474487	OCIII			
ramero de mamparas	Fuente: Autor				_
	CHPHIP AHIII				

Fuente: Autor

Capítulo V. Conclusiones y recomendaciones

5.1. Conclusiones

Al realizar la evaluación de la eficiencia de los procesos de potabilización utilizados en la planta de tratamiento de agua potable (PTAP) de Cachiyacu, cantón Paute, Provincia del Azuay, se concluye que:

- Una vez realizado el diagnóstico de la calidad del agua en los puntos seleccionados para tal fin (afluente a la planta, después de la floculación y en el efluente de la PTAP), se evidenció la necesidad de evaluar los métodos de depuración empleados, ya que algunos de los resultados de los ensayos, como: color y turbiedad, no cumplen con los valores de la normativa vigente sobre calidad de agua potable. Se pudo observar que a la salida del tanque de floculación algunos valores de color y turbiedad superaban lo establecido en las normas, no siendo así a la salida de la planta, por lo que se concluye que el proceso de filtración es deficiente
- En los parámetros de calidad de agua cruda, a la salida del tanque de floculación y en la descarga al reservorio bajo diferentes condiciones temporales, o estacionales se demostró que las condiciones ambientales, tales como el clima, la temperatura y las precipitaciones, influyen directamente en la calidad del agua cruda.
- En relación al planteamiento de alternativas que permitan mejorar las técnicas aplicadas en la PTAP de Cachiyacu, se compararon los valores determinados en el laboratorio, de cada cuantificación, con los límites permisibles de las precitadas normas (INEN, 2012) (NTE INEN 1108, 2020), y en el caso de la turbiedad se obtuvieron mediciones más elevadas a las permisibles, por lo que se realizaron pruebas de jarras utilizando dos (02) aditivos, sulfato de aluminio Al2(SO4)3, y cloruro férrico FeCl3. Se seleccionó el primero, debido a que en la PTAP se cuenta con el Sulfato de aluminio, además es de fácil adquisición y más bajo costo que el segundo. No se midió el cloro residual debido a que existen

investigaciones que muestran una correlación entre turbiedad, presencia de coliformes totales y fecales y color por lo que se infiere que una disminución de las NTU mejorará la calidad bacteriológica del agua Martínez et al., (2019)

- En los parámetros, sólidos disueltos y suspendidos se ve un incremento en el punto de salida debido a que la planta fue diseñada en el 2009 con un ajuste en el 2010 por el Ing. Luis Alvarracín para un caudal de 12,6 l/s, pero actualmente se está potabilizando 20 l/s esto hace que no se formen los floculos de acuerdo al diseño. Las dimensiones de los tanques de sedimentación y cloración no tienen las dimensiones necesarias para cubrir el caudal de diseño con que se encuentra trabajando la planta; el proceso de sedimentación se trabaja con un tiempo de retención de 3600 segundos en un área de 29.07m² cuando para un caudal de 20lts/seg la sección de retención debería ser de 42.15m² presentando una producción de lodos de 161,74 Kg/día; mientras que el diseño se encontraba sujeto a 101,89 Kg/día.

5.2. Recomendaciones

- Mantener limpio la zona de captación el desarenador, rejilla después de cada unidad de captación para retener materiales que puedan obstruir la línea de aducción a la entrada de la planta, este dispositivo, además permitirá disminuir la cantidad de sólidos y los niveles de turbiedad del agua.
- En zonas de captación se necesita hacer un estudio posterior de la cuenca hidrográfica para evitar crecientes y dejar sin el líquido vital para la población.
- Hacer un estudio a detalle de los floculadores y sedimentadores para que la PTAP sea más eficiente y optimizar recursos.
- Realizar un estudio de una posible implementación de filtro rápido a la entrada de la planta para retener la mayor cantidad de sólidos.

- Al momento de tomar las muestras, se debe tener presente las condiciones ambientales ya que estas pueden alterar de manera significativa los resultados de los análisis de laboratorio.
- Aplicar la dosis obtenida en esta investigación a fin de ajustar tanto la velocidad como el tiempo de retención en las unidades de coagulación y floculación donde se determinó un valor de 1%, para 25 rev/min y un tiempo de 20 min donde la remoción media es del 95,50% para el valor de turbidez más elevado de los obtenidos que fue de 13.1. Haciendo un seguimiento con la constante caracterización del agua de abastecimiento para que de ser necesario se ajuste la dosificación cuando las condiciones climáticas modifiquen las características del agua a la entrada de la planta.
- Realizar un estudio utilizando carbón activado en la filtración, a fin de disminuir las unidades de Color Aparente Pt-Co, ya que absorbe partículas y pueden modificar la calidad del agua como olor y sabor. Además, se podría comparar con el uso de bandejas de aireación estas son eficientes, pero adicionan un control en el proceso de filtración.
- Elaborar un programa de monitoreo de los procesos señalados y un plan de mantenimiento de los filtros para evitar que las unidades de color aparente excedan los límites permisibles. Teniendo en consideración los casos extremos de turbiedad en época de lluvia, por lo que, además, se debe cerrar el acceso del agua a la planta para salvaguardar los procesos de filtrado.

BIBLIOGRAFIA

- AQUAPROCYSA. (2019). *Planta de Tratamiento de Agua Potable*. Recuperado el 31 de Enero de 2022, de https://www.aquaprocysa.com/planta-tratamiento-aguapotable.html
- Blancas, & Javier. (2019). Factores Asociados a la Calidad Microbiológica y Físicoquímica del agua potable de Marcapomacocha, Yauli-La Oroya. [Título Profesional del Químico Farmaceútico], Universidad Peruana de Los Andes, Perú.
- Burgos, Y. (2019). *Guía para la evaluación técnica de plantas de tratamiento de agua potable*. [Especialización en Gestión Ambiental], Universidad Libre de Socorro, Colombia. Obtenido de https://hdl.handle.net/10901/20303
- Carbotecnia. (14 de Noviembre de 2021). *Significado de dureza en agua*. Obtenido de https://www.carbotecnia.info/aprendizaje/quimica-del-agua/dureza/
- Cordy, G. (18 de Febrero de 2014). *Departamento del Interior de EE. UU. Servicio Geológico de EE. UU.* Obtenido de https://pubs.usgs.gov/fs/fs-027-01/
- dreamstime. (2022). *Agua potable que flye en un tanque de distribución*. Obtenido de https://es.dreamstime.com/agua-potable-que-fluye-en-un-tanque-de-la-distribuci%C3%B3n-image117680315
- extension.psu. (19 de Octubre de 2020). *Bacterias Coliformes*. Obtenido de https://extension.psu.edu/bacterias-coliformes
- Fernández, S. (2020). *Potabilización del Agua*. Recuperado el 8 de Abril de 2022, de https://slideplayer.es/slide/3732963/
- Fonseca, J., & Andi, J. (2018). Evaluación de la calidad físico-química y microbiolófia de la planta potabilizadora de agua del barrio Las Américas en el año 2018.

 Universidad Estatal Amazónica, Ecuador. Obtenido de https://repositorio.uea.edu.ec/handle/123456789/504
- García, J. (2021). Diagnóstico y mejoramiento de la planta de tratamiento de agua potable (PTAP) del municipio de Coello. [Para optar al título de Ingeniero Químico], Universidad de Antioquia, Colombia. doi:http://hdl.handle.net/10495/24271
- geoportaligm. (2017). VISOR INSTITUTO GEOGRÁFICO MILITAR ECUADOR.

 Obtenido de https://www.geoportaligm.gob.ec/portal/
- Google Earth. (2022). Barrio Cachiyacu. Obtenido de http://www.googleearth.com

- HACH. (2022). 2100Q Turbidímetro portátil. Obtenido de https://es.hach.com/2100q-turbidimetro-portatil-epa/product?id=24930077421
- HACH. (2022). *Medidor multiparamétrico de una entrada para laboratorio HQ430D: pH, conductividad, oxígeno disuelto óptico, ORP e ISE.* Obtenido de https://co.hach.com/medidor-multiparametrico-de-una-entrada-para-laboratorio-hq430d-ph-conductividad-oxigeno-disuelto-optico-orp-e-ise/product?id=53559494535
- hanna. (2022). *Medidor multiparámetro HI 9829*. Obtenido de https://www.hannacolombia.com/productos/producto/hi-9829-medidor-multiparametro
- Harriss, W. (15 de Octubre de 2021). *Ozone destroys all known pathogens* . Obtenido de https://www.linkedin.com/pulse/ozone-destroys-all-known-pathogens-william-h-harriss-fbii/
- Hernández, & Corredor. (2017). DISEÑO Y CONSTRUCCION DE UNA PLANTA MODELO DE TRATAMIENTO PARA LA POTABILIZACION DE AGUA, SE DISPONDRA EN EL LABORATORIO DE AGUAS DE LA UNIVERSIDAD CATÓLICA DE COLOMBIA. [Trabajo de grado para optar al título de Ingeniero Civil], Repositorio Institucional UCATÓLICA, Bogotá D.C.
- Hernàndez, A. (02 de Agosto de 2007). SÓLIDOS SUSPENDIDOS TOTALES EN AGUA SECADOS A 103 105 °C. . Obtenido de http://www.ideam.gov.co/documents/14691/38155/S%C3%B3lidos+Suspendido s+Totales+en+aguas.pdf/f02b4c7f-5b8b-4b0a-803a-1958aac1179c
- Hidalgo, O. (2020). Estudio comparativo de los criterios de calidad de agua para consumo humano, con respecto a los indicadores establecidos en la norma Boliviana. Diplomado en Desarrollo Comunitario y Gestión de Proyectos de agua y saneamiento, Universidad Mayor de San Simón, Cochabamba.
- ICB Editores. (2017). *Calidad de Agua. Usos y Aprovechamiento* (1ra ed.). (S. ICB, Ed.)
 INEN. (2002). *INEN 1 529-6*. Obtenido de https://www.normalizacion.gob.ec/buzon/normas/1529-6.pdf
- INEN. (4 de Enero de 2012). NORMAS PARA ESTUDIO Y DISEÑO DE SISTEMAS DE AGUA POTABLE Y DISPOSICIÓN DE AGUAS RESIDUALES PARA POBLACIONES MAYORES A 1000 HABITANTES. Obtenido de CPE INEN 5

- Parte 9-1:1992: https://www.normalizacion.gob.ec/buzon/normas/cpe_inen_5-parte9-1.pdf
- Jiménez, E., & Miranda, R. (2021). *Análisis de Riesgo de la Calidad de Agua Potable de la Obra de Captación para la Ciudad de Tupiza*. [Diplomado en comunitario y gestión de proyectos de agua y saneamiento], Universidad Mayor de San Simón, Cochabamba-Bolivia. Obtenido de http://hdl.handle.net/123456789/25933
- Lòpez, J. (2 de Octubre de 2017). *Desviación estándar o típica*. Obtenido de https://economipedia.com/definiciones/desviacion-tipica.html
- Martínez, M., Mendoza, J., Medrano, B., Gómez, L., & Zafra, C. (25 de Octubre de 2019).
 Evaluación de la turbiedad como parámetro indicador del tratamiento en una planta potabilizadora municipal. *Revista UIS Ingenierías*, 19(1), 15-24. Obtenido de https://revistas.uis.edu.co/index.php/revistauisingenierias/article/download/9929/10063/71188
- Minitab. (2022). *Interpretar los estadísticos para Almacenar estadísticos descriptivos*. Obtenido de https://support.minitab.com/es-mx/minitab/18/help-and-how-to/statistics/basic-statistics/how-to/store-descriptive-statistics/interpret-the-statistics/#:~:text=que%20la%20varianza.-,Interpretaci%C3%B3n,mayor%20dispersi%C3%B3n%20de%
- Mora, P. (2020). Evaluación preliminar en las áreas de hidráulica y saneamiento de la Planta Potabilizadora de Barranca de Puntarenas. [Licenciatura en Ingeniería Civil], Universidad Latina de Cosa Rica, Costa Rica. Obtenido de https://dspaceaya.igniteonline.la/handle/aya/203
- NTE INEN 1108. (2020). *Norma técnica Ecuatoriana*. Obtenido de https://pdfcoffee.com/nteinen1108-2-pdf-free.html
- Organización Mundial de la Salud. (2006). *Guía para la calidad de agua potable* (Tercera ed., Vol. 1). Geneve, Suiza.
- Organización Mundial de la Salud. (14 de Junio de 2019). Obtenido de https://www.who.int/es/news-room/fact-sheets/detail/drinking-water
- Pardillo, B. (12 de Septiembre de 2016). *iagua.es*. Obtenido de https://www.iagua.es/blogs/beatriz-pradillo/parametros-control-agua-potable#:~:text=Por%20ejemplo%2C%20los%20par%C3%A1metros%20a,resid

- ual%20y%20cloro%20combinado%20residual.
- samsa. (2008). *Proceso de Potabilización del agua*. Obtenido de http://www.elaguapotable.com/Proceso%20potabilizaci%C3%B3n(Sansa).pdf
- Sawakinome. (25 de Enero de 2022). Obtenido de https://es.sawakinome.com/articles/analytical-chemistry/difference-between-acidity-and-alkalinity-of-water.html.
- SCIELO. (2018, Agosto 20). Ph del agua potable que consumen estudiantes del segundo año de la Carrera de Medicina, Universidad Mayor de San Andres. *Cuadernos Hospital de Clínicas*, 59(2).
- TECNOSOLUCIONES. (08 de Junio de 2020). Características Físicos, Químicas y Biológicas en el Agua Potable que deben controlarse. Obtenido de https://tecnosolucionescr.net/blog/215-caracteristicas-fisicos-quimicas-y-biologicas-en-el-agua-potable-que-deben-controlarse
- Ulloa, R. (2019). Determinación físico-química del agua potable que se consume en el campus universitario de la Universidad Nacional de Trujillo - Departamento "La Libertad"- Perú". Tesis de Grado, Universidad Nacional de Trujillo, Trujillo-Perú.
- wikipedia. (2022). *Cantón Paute*. Obtenido de https://es.wikipedia.org/wiki/Cant%C3%B3n_Paute
- worldcat. (2022). Red Iberoamericana de Potabilización y Depuración de Agua.

 Recuperado el 15 de Enero de 2022, de http://worldcat.org/identities/nc-red%20iberoamericana%20de%20potabilizacion%20y%20depuracion%20de%20agua/

Anexos

Anexo 1. 28-03-2022

Formation Control de Caracteristicas Físico-quimicas y microbiológicos Hora: 10 : 0 cq	Universitied Cataliera				
15 15 15 15 15 15 15 15	de Cuenca	CONTROL DE CA	RACTERISTICAS FÍSICO-QUIMICAS Y MIC	CROBIOLÓGICOS	
Family Después De La Florentaira; 17°C Horaline Fame Family Fame Family Fame Fam	Fecha: 1022/03/-	28	Hora: 10:04		11.5
## PERMINAPLE SALUDAPS ## PERMINAPLE SALUSAPLE ## PERMINAPLE	Clima: Parc almonte	Noblede	Temperatura: (7		Hora Laboratorio: 11'30
18 mg/L o pm 12 mg/L 2 mg/L 5 mg/L 5, 24 NJU 119 ppm CaCO3 7 ppm CaCO3 7 ppm CaCO3 7 ppm CaCO3 52 ppm CaCO3 5	TOMA DE MUESTRAS	ENTRADA P1	DESPUES DE LA FLOCULACIÓN P2	SALIDA P3	OBSERVACIONES
18 mg/L o ppm 12 mg/L 2 mg/L 119 ppm 133 ppm 165 ppm 5,23 NTU 1,83 NTU 4,83 NTU 119 ppm CaCO3 7 ppm CaCO3 51 ppm CaCO3 7 ppm CaCO3 51 ppm CaCO3 55 ppm CaCO3 51 ppm CaCO3 55 ppm CaCO3 52 ppm CaCO3 52 ppm CaCO3 52 ppm CaCO3 54 ppm CaCO3 46,9 46/Ca 16 Pt/Ca 17 Pt/Ca		18 ppm	83 ppm	88 ppm	
5,23 NTU 1,83 NTU 1,83 NTU 6,84 NTU 119 PPM 133 PPM 165 PPM CaCO3 51 PPM CaCO3 55 PPM CaCO3 52 PPM CaCO3 53 PPM CaCO3 660,9 465 Cm 149,1 A65 Cm 145,2 465 Cm 16,9 °C 16,4 °C 16,3 °C 1,44		mg/1 0 ppm	12 mg/L	2mg/2	
119 ppm 133 ppm 165 ppm 5 165 ppm 5 5 ppm CaCO3 7 ppm CaCO3 4 ppm CaCO3 5 ppm	100	5,23 NTU	1, 83 NTU	0,54 NTU	
Sembrados 3 ppm CaCO3 4 ppm CaCO3 Scholados 17 Pt Co 160,9 45/cm 160,9 45/cm 161,9 °C 16,9 °C 1		mg ppm	133 ppm	165 ppm	
Schbrode Schbrode Schbrode 1786 Cc 160,9 45/cm 146,9 °C 16,1 °C 16,1 °C 16,1 °C 16,1 °C 16,3 °C 16,5 °C 16,4 °C 16,1 °C 16,3 °C 16,5 °C		FROM Calls	7 PPM CaCO3	4 ppm CaCO2	M- Natoria de Met-10
Sembrades Sembrades 17PE/Co 160,9 4/5/cm 160,9 4/5/cm 16,4°c 16,4°c 16,4°c 16,4°c 16,4°c 16,4°c 16,4°c		1 PPM CaCO3	SSPPM CaCO3	S3 PPM COCO3	Callis - Cabenato de calcio
Scmbodo 1786 Co 160,9 48/cm 9,58 mg/L 16,4°C 16,7°C 16,7°C 16,32 mg/L 16,4°C	S	nbrode			
17Pf Co 16 Pt/Co 160,9 45/cm 149,1 As/cm 9,88 mg/L 9,32 mg/L 16,4°C 16,7°C		emblado			
160,9 45/cm 149,1 As/cm 9,58 mg/L 9,32 mg/L 16,4°C 16,7°C 7,47 7,34		PERO	14 PE/Co	5 PHCo	100
9,58 mg/2 9,32 mg/2 16,4°C 16,7°C 1,49 7,34		50,9 45/cm	149,1 Astem	145,2 Us/cm	
7, t'31 2, b'3t		1,58 mg/L	9,32 mg/L	71 8W 94/8	
7,47		2. h'9F	J. t'91	20, 5'91	
	Hd	- th't	7,34	7, \$1	
entransment El Casdal de entrada es 20 HSco.					

Anexo 2. 04-04-2022

Colourabled	Losiversidad	FORMATO DE REGISTRO		
3		CONTROL DE CARACTERISTICAS FÍSICO-QUIMICAS Y MICROBIOLÓGICOS	CROBIOLÓGICOS	
Fecha: 2022 104/04	10/10	Hora: 09:19	b	
Clima: Salcoda	de	Temperatura:	Temperatura: Poste, 16°C	Hora Laboratorio: 10.56
TOMA DE MUESTRAS	ENTRADA P1	DESPUES DE LA FLOCULACIÓN P2	SALIDA P3	OBSERVACIONES
SDT	90 ppm	93 ppm	41 ppm	í
SST	to ppm	SS PPM	10 ppm	
TURBIEDAD	1,36 MU	2, 20 NTU	0,91 MU	
ACIDEZ	6 ppm	SpipM	6 ppm	
ALCALINIDAD	loppin	24 ppm	17 ppm	
DUREZA TOTAL	FSpor	69 Ppm	70 ppm	(Star)
COLIFORMES TOTALES	Symbolody			Hosenera menor a fillypx 10cm
COLIFORMES FECALES	Serbede			No. Species
COLOR APARENTE	4 Pt-Co	3 Pt -Co	OR-Co	
CONDUCTIVIDAD	16,6 ds/an	173,9 16/cm	174,3 Ns/cm	(Marie)
OXÍGENO DISUELTO	9, 63 mg/L	9,60 mg/L	7/6406/8	
TEMPERATURA	7, 4,51	15,8.5	15,2 °C	
H	8,51-7,97	7.35 : 7,41	186, 1,3t	

Anexo 3. 12-04-2022

Fechs: Rotes 12	Fochs. Retes 12 de Abril de 2022	Hora: 07:00			10.30
Char Eleada	3	Temperatura: Pash 16°C	J. 91 -4	Hora Laboratorio:	000
TOMA DE MUESTRAS	ENTRADA P1	DESPUES DE LA FLOCULACIÓN P2	SALIDA P3		OBSERVACIONES
SDT	SW PPm	75 ppm	75 ppm		
SST	0	0	0		1
TURBIEDAD	1,98 NTU	2,39 1070	1,23 NTU		
ACIDEZ	180 PPM	186 ppm	44 ppm	ý	
ALCALINIDAD	& ppm	6 ppm	7 ppm		
DUREZA TOTAL	SS PPM	56 Ppm	66 ppm		
COLIFORMES TOTALES	Deja Scomberde			4	
COLIFORMES FECALES	Sembrado				
COLOR APARENTE	17 Pt-Co	33 .P6-Co	46 Pt -Co		
CONDUCTIVIDAD	147,7 US/cm	146,4 46/cm	145,8 45/cm	C	
OXÍGENO DISUELTO	8,40 mg/L	9.31 mg/L	2/ Kg mg/2		
TEMPERATURA	7, 9,71	14,4 %	14,2 %C		
Hd	2004	7,83	7,46		

Anexo 4. 18-04-2022

42	Universitied	FORIVIA TO DE REGISTRO		
de Cuencia		CONTROL DE CARACTERISTICAS FÍSICO-QUIMICAS Y MICROBIOLÓGICOS	ROBIOLÓGICOS	
Fecha: Lanks	Feetin: Lanes 18 de Abril de 2022	Hora: C9:17		100
Clima: Pack	clima: Peacle Inente Nublada	Temperatura:		Hora Laboratorio: AC'SC)
TOMA DE MUESTRAS	ENTRADA P1	DESPUES DE LA FLOCULACIÓN P2	SALIDA P3	OBSERVACIONES
SDT	79 ppm	81 ppm	80 PPM	
SST	55 fpm	150 ppm	75 ppm	
TURBIEDAD	1,60 NTU	1,5 N7U	0,96 NTU	
ACIDEZ	115 ppm	tes ppm	152 ppm	
ALCALINIDAD	10 ppm	10 ppm	7 ppm	***************************************
DUREZA TOTAL	68 PPM	45 ppm	65 ppm	
COLIFORMES TOTALES				
COLIFORMES FECALES				
COLOR APARENTE	24 Pf -Co	14 Pt-Co	41 Pt-Co	
CONDUCTIVIDAD	154,2 45/cm	154, 4 Noten	151,2 45fm	100
OXÍGENO DISUELTO	7/ Qu 36'8	7/8W F6'6	8, 12 mg/2	
TEMPERATURA	181 "	14,2 "	14,8°C	
Hd	t8'8	7,62	7,26	

Anexo 5. 20-04-2022

	1 11 10 1			170
Fecha: H. C.C.	Fecho: Hierorles 20 de Hbil del 2022	Hora: 20:00		h. //
Clima: (Louis Dolo	o Dolo	Temperatura: 13 °C		Hora Laboratorica Company Control Control Control Hora of 25
TOMA DE MUESTRAS	ENTRADA P.1	DESPUES DE LA FLOCULACIÓN P2	SALIDA P3	OBSERVACIONES
SDT	21 PPm	64 fpm	68 ppm	No Sc asteba Peterb Endo
SST	Goc Pen	€ PPm	Oppin	-
TURBIEDAD	Actigo Superado mas	1,3 270	C, 29 NTU	
ACIDEZ	Gloyer derestado			
ALCALINIDAD				2
DUREZA TOTAL				
COLIFORMES TOTALES	No Se Seal.20	C. Permes		
COLIFORMES FECALES				
COLOR APARENTE	Per marina del fango	3P6-Ce	o Caler	
CONDUCTIVIDAD	29,4 45/cm	127,7 testem	133,7 US/cm	
OXÍGENO DISUELTO	7/Bu ts'3	1,08 mg/2	8,31 12/1	
TEMPERATURA	J. h'91	15,1 %	15,3°C	
Н	7,01	6,54	12'9	

Anexo 6. 25-04-2022

Universities	Universidad	FORMATO DE REGISTRO		
3		CONTROL DE CARACTERISTICAS FÍSICO-QUIMICAS Y MICROBIOLÓGICOS	DBIOLÓGICOS	
Fechs: Parte 2	FREND PONTE 25 de Abilde 2422	HORE: 08:39 AM		1. 1
Comas Pacies	cimas Parcial mark Nubbelo	Temperatura: Parofe 18 °C		Hora Laboratorio: 40, 10 o.l.n.
TOMA DE MUESTRAS	ENTRADA P1	DESPUES DE LA FLOCULACIÓN P2	SALIDA P3	OBSERVACIONES
SDT	56 ppm	59 ppm	62 PPm	
SST	Be ppm	150 PPm	100 ppm	Sec. Sec.
TURBIEDAD	7,25 NIU	9, 6 S NTU	9,95 MIU	
ACIDEZ	11 ppm	20 ppm	7 ppm	
ALCALINIDAD	15 ppm	Stpin	7 ppm	
DUREZA TOTAL	Ye ppm	50 ppm	Sc Pm	
COLIFORMES TOTALES				
COLIFORMES FECALES				
COLOR APARENTE	37 PC-Co	26 Pt-Co	4 PC-Ce	
CONDUCTIVIDAD	# 101,4 45/cm	107,9 Askm	116,9 45/cm	-
OXÍGENO DISUELTO	11,38 mg/L	10,32 mg/L	8, 79 mg/L	
TEMPERATURA	Ja 1/1)	13,5 °C	13,6%	
Hd	pt 15	6, 98	69'9	

Anexo 7. 03-05-2022

	Universitied	FORMATO DE REGISTRO		
de Cuenca		CONTROL DE CARACTERISTICAS FÍSICO-QUIMICAS Y MICROBIOLÓGICOS	ROBIOLÓGICOS	
Fechs: Pache 1	Feeter Parte Bothes 03 de Mayo 2022	22 Hora: 08:52		
Clima: Nublindo	do			Hora Laboratorio: 11 2.0
TOMA DE MUESTRAS	ENTRADA P.I.	DESPUES DE LA FLOCULACIÓN P2	SALIDA P3	OBSERVACIONES
SDT	S 8 PPM	64 PPM	CI PPID	
SST	150 PPm	150 PPm	So ppm	
TURBIEDAD	13,1 NTU	1,79 000	1, 4/1,57 Niv	
ACIDEZ	MOOM	6 ppm	8 ppm	
ALCALINIDAD	le pem	4 ppm	7 Apm	
DUREZA TOTAL	85 PPM	60 ppm	45 PPm	
COLIFORMES TOTALES		77 (28)		
COLIFORMES FECALES				
COLOR APARENTE	3 P (- Ce	D-401	OR-Co	
CONDUCTIVIDAD	Hog 45 Cm	117, 8 45/cm	118,5 45/4m	
OXÍGENO DISUELTO	8,33 mg 1L	11 du Sh' b	2,74 mg/2	
TEMPERATURA	2. 8'21	15,3%	43,7 °C	
Hd	3,68	6,97	7,01	

Anexo 8. 10-05-2022

Universities Cardina	Universibled	FORMATO DE REGISTRO		
3		CONTROL DE CARACTERISTICAS FÍSICO-QUIMICAS Y MICROBIOLÓGICOS	ROBIOLÓGICOS	
Fochs: 10 (05/2022	5/2022	Hora: 07:45		1.0
Clima: Portive mente	monte Mobbede	Temperatura: 13°C		Hora Laboratorio: (.26
TOMA DE MUESTRAS	ENTRADAPI	DESPUES DE LA FLOCULACIÓN P2	SALIDA P3	OBSERVACIONES
SDT	118 ppm	65 ppm	64 ppm	
SST	0	0	0	
TURBIEDAD	1,97 NZU	3,56 170	1,32 NTU	The state of the s
ACIDEZ	11 ppm	9 ppm	1 poin	
ALCALINIDAD	10 ppm	7 ppm	S PPIN	
DUREZA TOTAL	64 ppm	60 ppm	54 PPM	*
COLIFORMES TOTALES				
COLIFORMES FECALES				
COLOR APARENTE	43 Pt -Cc	JOR Co	0 R-C	
CONDUCTIVIDAD	120 ds/cm	127,5 45/cm	128,3 45 Cm	
OXÍGENO DISUELTO	11, 40 mg/L	16,31 mg/L	8,70 mg/l	
TEMPERATURA	13,9 °C	13,7 °C	18,7°C	
Н	8,c7	7,04	7.00	

Anexo 9. 16-05-2022

	Universities	FORMATO DE REGISTRO		
3		CONTROL DE CARACTERISTICAS FÍSICO-QUIMICAS Y MICROBIOLÓGICOS	ROBIOLÓGICOS	
Fecha: L-nc3	Frechas Lores 16 de mayo	HORS: 07; 43 CM	30m	7
Clima: 11000000	00	5	12°C	Hora Laboratodo: 10, 20 Oyn
TOMA DE MUESTRAS	ENTRADA P1	DESPUES DE LA FLOCULACIÓN P2	SALIDA P3	OBSERVACIONES
SDT	57 ppm	55 ppm	Sypon	
SST	250 Ppm	200 ppm	too ppm	
TURBIEDAD	7,86 NTU	7,4 150	LITS NIU	
ACIDEZ	S ppm	6 ppm	7 PPm	
ALCALINIDAD	2s Ppm	S Apm	S Pom	
DUREZA TOTAL	-0	2 ppm	35 P.D.M	
COLIFORMES TOTALES		1.1		
COLIFORMES FECALES				
COLOR APARENTE	52P6-C	40 Pt C.	1 P4-C	
CONDUCTIVIDAD	93,9 456m	78,6 45 km	78,2 Ws /cm	
OXÍGENO DISUELTO	9,31 mg/2	7/ 80 mx/1	71 ku 8 18	
TEMPERATURA	20 B'M	17,7°C	13,9 °C	
Hd	1018	125	96,36	

Anexo 10. 30-05-2022

	Universitied Casales	FORMATO DE REGISTRO		
•		CONTROL DE CARACTERISTICAS FÍSICO-QUIMICAS Y MICROBIOLÓGICOS	CROBIOLÓGICOS	
Fecha: Lanes	FACTOR STO de OLYO de 2022	Hora: 16:25	10	
Cima: 20/co-do	and co	Temperatura: 16 °C	2,9	Hora Laboratorio: 11:45 c.m.
TOMA DE MUESTRAS	ENTRADA P1	DESPUES DE LA FLOCULACIÓN PZ	SALIDA P3	OBSERVACIONES
SDT	270 ppm	65 ppm	160 ppm	
SST	Ge ppm	to ppm	2x ppm	
TURBIEDAD	6,34 NTU	1,751510	C, 28 NTU	
ACIDEZ	do popm	S ppm	S PAN	
ALCALINIDAD	12 ppm	to pom	9 Pem	- C
DUREZA TOTAL	45 ppm	40 ppm	46 ppm	
COLIFORMES TOTALES				
COLIFORMES FECALES				
COLOR APARENTE	18170	J-184	0-4-C	
CONDUCTIVIDAD	17,3 43Cm	101,7 45/cm	No7,7 NS/un	
OXÍGENO DISUELTO	7/Bu 05 101	9, 72ms/2	9,03 mg/L	
TEMPERATURA	12,8 °C	J. 6'61	13,2 %	
Н	09't	589	6,32	

Anexo 11. Evaluación del gradiente del floculador hidráulico de flujo horizontal

PASO	DATOS S	umb.	VALOR	UNID	CRITERIOS	CALCULOS	RESULTADOS	Simb.	UNIC
	Caudal	Q	0,0126	m³/s	$L = V \times T \times 60$	93,50	Longitud de canales del		
1	Tiempo de retención	Т	32,45	min	2-7 // // //	00,00	tramo de floculador	L	m
2	Velocidad canales	٧	0,048	m/s	$A = \frac{Q}{V}$	0,26	Area mojada del canal	A	m ²
	Calado en el canal	н	1,050	m	$a = \frac{A}{H}$	0,25	Ancho de canal	a	m
3					$d = 1.5 \times a$	0,38	Ancho de las vueltas	d	m
3					$V_2 = \frac{Q}{d \times H}$	0,03	Velocidad en las vueltas	V ₂	m/s
5	Ancho del tramo de floculación	В	2,75	m	$N = \frac{L}{B}$	34,00	Número de canales del tramo	N	u
6	Espesor de las pantallas	e	0,008	m	$L_F = N \times (a+e) - e$	8,76	Longitud entre paredes del tramo de floculación	Le	m
7					$H_{1} = \frac{N \times V_{1} + (N-1) \times V_{2}^{2}}{2 \times g}$	0,01	Pérdida de carga en las vueltas	Hı	m
					$P = 2 \times H + a$	2,35	Périmetro mojado del canal	Р	m
8					$R_H = \frac{A}{P}$	0,11	Radio hidráulico	RH	m
	Coeficiente de rugosidad de Manning correspondiente al material de los canales	n	0,013	adim	$H_2 = \left(\frac{nV}{R_B^{2/3}}\right)^2 \times L$	0,00	Pérdida de carga en el canal	Hz	m
9					$H_{FT} = H_1 + H_2$	0,01	Pérdida de carga total en el tramo de floculación	Her	m
10	Viscocidad absoluta agua	μ	1,14E-03	N s/m²	$G = \sqrt{\frac{y \times H_{II}}{\mu \times T}}$	5,30	Gradiente de velocidad	G	g-1
	Peso específico del agua	7	9798	N/m³	$U = \sqrt{\mu \times T}$	6,50			

Anexo 12. Evaluación hidráulica de la unidad de sedimentación

PASO	DATOS	Simb	VALOR	UNID	CRITERIOS	CALCURAG	DEALE SANGE		
	Velocidad crítica de sedimentación de las particulas	Vp	0,58	cm/mir		CALCULOS	RESULTADOS	Simb	UNIE
	Separación perpendicular entre sedimentadores	m	0,108	m	$V_{\nu} = \left[-\frac{m}{\tan \theta} \right]$		Velocidad del agua entre placas		
1	Angulo de inclinación de las placas	0	60,00	0	$V_{cs} = \frac{V_z}{S_C} sen\theta + \frac{\left(1 - \frac{m}{\tan \theta}\right)}{m} \cos \theta$	3,56	para la remoción total de particulas con velocidad de	Vem	cm/mir
	longitud de sedimentador	1	1,20	m	1		sedimentación igual o mayor a la considerada		Cattage
	Factor de Yao que define el tipo de sedimentador (placas planas de asbesto cemento)	Sc	1,00						
2					$T_{\text{EUF}} = \frac{1440 \times V_{em}}{100} sen(\theta)$	44,34	Tasa superficial requerida	Tsup	m*im*d
3	Caudal	Q	0,0126	m³/s	$A_{\alpha,p} = \frac{86400 \times Q}{T_{\alpha,p}}$	24,60	Area superficial neta	Asur	m ²
4	Número de cámaras de sedimentación	NS	2,00	u					
	Ancho útil de una cárnara sedimentador	В	2,44	m	$L_0 = \frac{A_{SUP}}{NS \times B}$	5,00	Longitud neta de la unidad	Lo	m
5			28		$N = \frac{L_0 \times \operatorname{sen} \theta}{m}$	40,00	Número de canales entre placas a lo largo de cada sedimentador	N	U
					Np = N + 1		Número de placas en el sedimentador	Np	u
6	Espesor de las placas (Asbesto cemento)	e	0,008	m	$L_{\tau} = L_0 + \frac{e \times Np}{sen(\theta)} + l\cos\theta$	5,98	ongitud total de un sedimentador	Lr	n
	Evaluación de las características del flujo	o y arra	stre de sóli	dos					
	Ancho de las placas	b	2,44	m	$R_N = \frac{m \times b}{2(m+b)}$	0,05171 R	adio Hidráulico	RH	m
7	Masa especifica del agua (15°C)	ρa	999,10	Kg/m³	. 0 · R. · V				
6. 8	Viscocidad absoluta del agua (15° C)	μ	1,14E-03	N s/m²	$Re = \frac{\rho_a \cdot R_H \cdot V_{em}}{\mu}$	26,87 N	Úmero de Reynolds	Re	
	Condición para flujo laminar NB-592				Si Rc ≤ 500 entonces flujo es taminar	Laminar	Tipo de fujo		
	Condición para no arrastrar flóculos NB-592				Vern < 21 cm/min	cumple Co	ondición de arrastre de fóculo		

AUTORIZACION DE PUBLICACION EN EL REPOSITORIO INSTITUCIONAL

Yo, Daniel Marcelo Rocano Portoviejo portador de la cédula de ciudadanía N.º 0105130751 En calidad de autor y titular de los derechos patrimoniales del trabajo de titulación "EVALUACIÓN DE LOS PROCESOS DE POTABILIZACIÓN DE AGUA APLICADOS EN LA PTAP DE CACHIYACU DEL SISTEMA MUNICIPAL DE LA CIUDAD DE PAUTE" de conformidad a lo establecido en el artículo 114 Código Orgánico de la Economía Social de los Conocimientos, Creatividad e Innovación, reconozco a favor de la Universidad Católica de Cuenca una licencia gratuita, intransferible y no exclusiva para el uso no comercial de la obra, con fines estrictamente académicos, Así mismo; autorizo a la Universidad para que realice la publicación de este trabajo de titulación en el Repositorio Institucional de conformidad a lo dispuesto en el artículo 144 de la Ley Orgánica de Educación Superior.

Cuenca, 11 de agosto de 2022

Daniel Marcelo Rocano Portoviejo

0105130751