### UNIVERSIDAD CATÓLICA DE CUENCA

# UNIVERSIDAD CATÓLICA DE CUENCA

## UNIDAD ACADÉMICA DE INGENIERÍA, INDUSTRIA Y CONSTRUCCIONES

#### CARRERA DE INGENIERÍA CIVIL

DISEÑO DEFINITIVO DEL INTERCEPTOR PARA EL CANTÓN PAUTE DESDE ZHUMIR HASTA YUMANCAY, PROVINCIA DEL AZUAY.

TRABAJO DE GRADUACIÓN PREVIO A LA OBTENCIÓN DEL TITULO DE INGENIERO CIVIL

PABLO ISMAEL GUERRERO ESPINOZA

DIRECTOR: ING. FEDERICO CÓRDOVA.

CUENCA – ECUADOR 2017

#### **DECLARACIÓN**

Yo, Pablo Ismael Guerrero Espinoza, declaro bajo juramento que el trabajo aquí descrito es de mi autoría; que no ha sido previamente presentado para ningún grado o calificación profesional; y, que he consultado las referencias bibliográficas que se incluyen en este documento.

Pablo Ismael Guerrero Espinoza

### CERTIFICACIÓN

| Certifico que        | e el presente | trabajo fue | desarrollado  | por Pablo | Ismael | Guerrero |
|----------------------|---------------|-------------|---------------|-----------|--------|----------|
| Espinoza, bajo mi su | ipervisión.   |             |               |           |        |          |
|                      |               |             |               |           |        |          |
|                      |               |             |               |           |        |          |
|                      |               |             |               |           |        |          |
|                      |               |             |               |           |        |          |
|                      |               |             |               |           |        |          |
|                      |               |             |               |           |        |          |
|                      |               | Ing. Feder  | rico Córdova. |           |        |          |
|                      |               |             |               |           |        |          |

**DIRECTOR** 

#### **DEDICATORIA**

En primer lugar a mi familia padre, madre y hermanas, que han sido siempre un aporte y un gran apoyo para concluir con un paso de mi vida estudiantil y así poder convertirme en un profesional, a mi abuelos mis segundos padres que me han apoyado desde la infancia y han creado un hombre de bien y finalmente a mi mujer quien ha caminado este tramo de la vida junto a mí y ha visto los sacrificios que tuvimos que atravesar para llegar hoy a alcanzar una pequeña meta que parecía siempre muy lejana, y a ti mi pequeña MÍA que fuiste quien me dio ese empujón que me faltaba para culminar con este proceso.

#### **AGRADECIMIENTOS**

Principalmente agradezco a Dios porque siempre me ha brindado salud y fuerza para llegar a cumplir mis metas y dentro de ello puedo recalcar una frase que me encanta y es verdad para mi "el tiempo de Dios es perfecto", a la Universidad Católica de Cuenca que me ha acogido en mi vida universitaria en la cual he conocido personas y grandes profesionales en el pasar de las aulas, a mi familia que siempre me han ayudado en todos los aspectos y siempre han tenido una fe ilimitada en mi, sobre todo a mi madre que con sus palabras siempre directas aunque muchas veces las mal interprete me ayudaron a ser mejor persona día a día y hoy si puedo decir un nuevo profesional, a mi mujer que me ha dado una de las mayores alegrías de mi vida, darme a mi pequeña hija, una parte de mi en una mujercita tan pequeña que se merece lo mejor como todos y que mejor que en su padre siempre vea un ejemplo a seguir ahora que va a ir creciendo poco a poco.

Y al GAD MUNICIPAL de Paute por brindarme toda la ayuda necesaria para poder completar con mi proyecto de investigación, en especial al Alcalde Dr. Helioth Treyes que ha sido una persona que me brindo su mano amiga de manera incondicional y sobretodo desinteresada.

#### **RESUMEN**

El presente proyecto denominado Diseño definitivo del Interceptor para el Cantón Paute desde Zhumir hasta Yumancay, provincia del Azuay.

Se enfoca objetivamente en el estudio y diseño de los sistemas de alcantarillado sanitario y pluvial aplicando nuevas metodologías implementadas, selecciona un sistema de depuración de aguas residuales que sea económicamente factible, se construirá con tecnologías disponibles en el medio, de fácil en su operación y mantenimiento, que ocupe la menor cantidad de espacio y sea amigable con el medio ambiente brindado condiciones salubridad adecuada a los usuarios del proyecto.

El contenido del presente proyecto de fin de carrera muestra lineamientos modernos y de utilidad para la zona donde va a ser implementado, con la ayuda de muchos recursos que permiten mejorar la calidad de vida de las personas que son del interés de su gobierno local.

Palabras clave: DISEÑO DEL INTERCEPTOR, SISTEMAS DE ALCANTARILLADO, CALIDAD DE VIDA.

vi

**ABSTRACT** 

This Project Desing for Expansion and Improvement of the Interceptro Sewer

for the Center of Canton Paute, Azuay province.

It focuses, objectively on the study and desing of systems for sanitary and

storm sewer by applying new methologies, which selects a system of treatment

economically feasible, it will be built with technologies avaible, easy in operation and

maintenance, occupying the least amount of space and friendly to the environment

conditions, providing and adequate sanitation to the users of this project.

The content of this final project of the career, shows modern lines and utility

to the where it will implemented with the help of many resources that improve the

quality of people's life who are in the interest of local government.

Keywords: DESING INTERCEPTOR, SEWERS, QUALITY OF LIFE.

|                                                     | VII         |
|-----------------------------------------------------|-------------|
| ÍNDICE DE CONTENIDOS                                |             |
| DECLARACIÓN                                         | I           |
| CERTIFICACIÓN                                       | II          |
| DEDICATORIA                                         | III         |
| AGRADECIMIENTOS                                     | IV          |
| RESUMEN                                             | v           |
| ABSTRACT                                            | VI          |
| CAPÍTULO 1                                          | 1           |
| ANTECEDENTES                                        | 1           |
| 1.1. INTRODUCCIÓN                                   | 1           |
| 1.2. JUSTIFICACIÓN                                  | 2           |
| 1.3. OBJETIVOS                                      | 3           |
| 1.3.1. OBJETIVO GENERAL                             | 3           |
| 1.3.2. OBJETIVOS ESPECÍFICOS                        | 3           |
| 1.4. DESCRIPCIÓN DEL ÁREA DE PROYECTO               | 3           |
| 1.4.1. DESCRIPCIÓN GEOGRÁFICA Y CARACTERÍSTICAS     | DEL ÁREA DE |
| ESTUDIO CON REFERENCIA A SU USO                     | 3           |
| 1.4.2. Límites                                      | 5           |
| 1.4.3. DESCRIPCIÓN GENERAL DE LAS CARACTERÍSTICA    | AS SOCIO-   |
| ECONÓMICAS Y DE SALUD DE LA POBLACIÓN               | 10          |
| 1.4.4. Indicadores económicos                       | 12          |
| 1.4.5. Indicadores Educativos                       | 15          |
| 1.4.6. Indicadores de Salud                         | 18          |
| 1.4.7. Indicadores de las viviendas                 | 19          |
| 1.5. INFRAESTRUCTURA BÁSICA EXISTENTE EN LA CIU     | DAD DE      |
| PAUTE                                               | 20          |
| 1.5.1. infraestructura para servicios a la sociedad | 20          |

|         |                                                                                                       | viii       |
|---------|-------------------------------------------------------------------------------------------------------|------------|
| 1.5.2.  | Infraestructura Sanitaria                                                                             | 23         |
| CAPITU  | JLO 2                                                                                                 | 27         |
| TRABA   | JO DE CAMPO                                                                                           | 27         |
| 2.1. L  | evantamiento TOPOGRÁFICO                                                                              | 27         |
| 2.1.1.  | Información Topográfica                                                                               | 27         |
| 2.1.2.  | Georeferenciación                                                                                     | 28         |
| 2.2. E  | VALUACIÓN Y CATASTRO DEL SISTEMA DE ALCANTARILLA                                                      | DO         |
| EXISTE  | NTE                                                                                                   | 29         |
| 2.2.1.  | Información preliminar                                                                                | 29         |
| 2.2.2.  | Catastro de los Sistemas de Alcantarillado                                                            | 30         |
| 2.2.3.  | CATASTRO REALIZADO                                                                                    | 31         |
| 2.2.4.  | CONCLUSIONES DEL CATASTRO                                                                             | 33         |
| 2.2.5.  | Diagnóstico del sistema de alcantarillado                                                             | 34         |
| 35      | aracterísticas Geológicas y evaluación geotécnica en la zona del proyec<br>S<br>NÁLISIS de resultados | eto.<br>47 |
| CAPITU  | ULO 3                                                                                                 | 49         |
| PARÁM   | ETROS DE DISEÑO                                                                                       | 49         |
| 3. SEL  | ECCIÓN DE PARÁMETROS Y CRITERIOS DE DISEÑO                                                            | 49         |
| 3.1. P  | ERIODO DE DISEÑO                                                                                      | 49         |
| 3.2. Po | oblación                                                                                              | 49         |
| 3.3. A  | NÁLISIS POBLACIONAL                                                                                   | 51         |
| 3.3.1.  | Crecimiento Población en el Cantón Paute                                                              | 52         |
|         | Crecimiento Poblacional                                                                               | 63         |
|         | ZONIFICACIÓN Y DENSIDADES DE LA ZONA URBANA DE LA                                                     |            |
|         | AD DE PAUTE                                                                                           | 71         |
| 3.4. D  | OTACIONES                                                                                             | 73         |
| 3.4.1.  | Dotación población servida                                                                            | 73         |

| • |   |
|---|---|
| 1 | v |
| 1 | Λ |

| 3.4.2.   | Dotación población conectada                                        | 76      |
|----------|---------------------------------------------------------------------|---------|
| 3.5. CA  | UDALES DE DISEÑO                                                    | 76      |
| 3.5.1.   | Obtención de Caudales Sanitarios                                    | 76      |
| 3.5.2.   | Obtención de Caudales Pluviales                                     | 82      |
| 3.5.3.   | Caudal de Alcantarillado Combinado                                  | 84      |
| 3.5.4.   | CÁLCULOS HIDRÁULICOS DE LA RED                                      | 85      |
| 3.5.5.   | Velocidades de Diseño                                               | 85      |
| 3.5.6.   | Evaluación Hidráulica de Colectores y Redes de Alcantarillado Exist | entes86 |
| 3.5.7.   | Diseño de Aliviaderos                                               | 87      |
| CAPITUI  | LO 4                                                                | 92      |
| DISEÑO I | DEL INTERCEPTOR                                                     | 92      |
| 4. DISE  | ÑO DE LA RED DE ALCANTARILLADO PARA INTERCEPT                       | OR 92   |
| 4.1.1.   | Tipo de Alcantarillado a ser implementado.                          | 92      |
| 4.1.2.   |                                                                     | 93      |
| 4.1.3.   | Pozos de Revisión                                                   | 95      |
| 4.1.4.   | Profundidades                                                       | 97      |
| 4.2. DIS | SEÑOS DEFINITIVOS del INTERCEPTOR                                   | 97      |
| 4.2.1.   | INTRODUCCIÓN                                                        | 97      |
| 4.3. DE  | SCRIPCIÓN DE LOS DISEÑOS DE LOS INTERCEPTORES.                      | 98      |
| 4.3.1.   | Interceptor de la margen izquierda río Paute: DESDE ZHUMIR HAS      | STA     |
| YUMAl    | NCAY DEL CANTÓN PAUTE.                                              | 98      |
| CAPITUI  | LO 5                                                                | 102     |
| ESTUDIO  | DE IMPACTO AMBIENTAL                                                | 102     |
| 5. ESTU  | JDIO DE IMPACTO AMBIENTAL                                           | 102     |
| 5.1. Est | udio de Impacto Ambiental y Manual de Mitigación Ambiental          | 102     |
| 5.1.1.   | OBJETIVO DEL ESIA                                                   | 102     |
|          | LÍNEA BASE AMBIENTAL                                                | 103     |
|          | ÁREAS DE INFLUENCIA                                                 | 105     |
|          | DETERMINACIÓN DE ÁREAS SENSIBLES                                    | 105     |
| 5.1.5.   | EVALUACIÓN DE IMPACTOS AMBIENTALES                                  | 106     |

| 5.1.6. PLAN DE MANEJO AMBIENTAL                                | 106 |
|----------------------------------------------------------------|-----|
| CAPITULO 6                                                     | 109 |
| 6. CONCLUSIONES Y RECOMENDACIONES                              | 109 |
| 6.1. CONCLUSIONES                                              | 109 |
| 6.2. RECOMENDACIONES                                           | 110 |
| BIBLIOGRAFÍA                                                   | 112 |
| ANEXOS                                                         | 114 |
| a) ESTUDIO DE SUELOS.                                          | 114 |
| b) ALCANTARILLADO DE PAUTE.                                    | 114 |
| c) DISEÑO, PLANOS Y CÁLCULO DEL INTERCEPTOR Y LOS ALIVIADEROS. | 114 |

| LISTA DE TABLAS                                                      |    |
|----------------------------------------------------------------------|----|
| Tabla 1: Representatividad poblacional provincia/ país               | 11 |
| Tabla 2: : Población según área geográfica                           | 11 |
| Tabla 3: ESTADO CIVIL DE LA POBLACIÓN ADULTA                         | 12 |
| Tabla 4: CATEGORÍAS DE Ocupación DE LA POBLACIÓN                     | 13 |
| Tabla 5: Rama de Actividad de la Población Urbana                    | 14 |
| Tabla 6: ACTIVIDADES REALIZADAS LA ULTIMA SEMANA PREVIA              | AL |
| CENSO                                                                | 15 |
| Tabla 7: representatividad del índice de analfabetismo               | 15 |
| Tabla 8: PORCENTAJE DE LA POBLACIÓN URBANA DE PAUTE                  | 16 |
| Tabla 9: INSTITUCIONES EDUCATIVAS DEL CANTÓN PAUTE                   | 16 |
| Tabla 10: ESTUDIANTES MATRICULADOS EN INSTITUCIONES EDUCATIV         |    |
| Tabla 11: PORCENTAJE DE LOS NIVELES DE INSTRUCCIÓN                   |    |
| Tabla 12: PORCENTAJE DE ASISTENCIA A                                 | 18 |
| Tabla 13: INDICE DE SALUD EN LA PARROQUIA URBANA DE PAUTE            | 18 |
| Tabla 14: CONDICIONES DE OCUPACIÓN DE VIVIENDAS ENCUESTADAS.         | 19 |
| Tabla 15: TENENCIA DE LA VIVIENDA EN LA                              | 20 |
| Tabla 16: CENTROS EDUCATIVOS DE PAUTE                                | 21 |
| Tabla 17: COBERTURA DEL SERVICIO Eléctrico                           | 22 |
| Tabla 18: COBERTURA DE SERVICIO telefónico EN LA                     | 22 |
| Tabla 19: FORMAS DE ELIMINACIÓN DE LAS AGUAS SERVIDAS                | 24 |
| Tabla 20: USO DE SERVICIO HIGIÉNICO                                  | 24 |
| Tabla 21: MEDIOS DE ABASTECIMIENTO DE AGUA POTABLE                   | 25 |
| Tabla 22: SISTEMA DE ABASTECIMIENTO                                  | 25 |
| Tabla 23: FORMAS DE ELIMINACIÓN DE LA BASURA                         | 26 |
| Tabla 24: RED GEODÉSICA DE LA CIUDAD DE PAUTE                        | 29 |
| Tabla 25: RESUMEN DE REDES Y TIPO DE DESCARGAS AL RIO PAUTE          | 33 |
| Tabla 26: POBLACIÓN PROYECTADA                                       | 50 |
| Tabla 27: DEMOGRAFÍA: Población censal de Paute 1950 – 2010          | 53 |
| Tabla 28: CRECIMIENTO POBLACIONAL DE PAUTE URBANO                    | 53 |
| Tabla 29: PROYECCIONES DEMOGRÁFICAS: Población (período 1990 – 2010) | 55 |
| Tabla 30: DEMOGRAFÍA: Estructura de la población Año 2010            | 56 |
| Tabla 31: DEMOGRAFÍA: Esperanza de vida al nacer                     | 58 |
| Tabla 32: DEMOGRAFÍA: Estructura de la migración                     | 59 |
| Tabla 33: DEMOGRAFÍA: Tasas Anuales, Vegetativas y Migratorias       | 60 |
| Tabla 34: DEMOGRAFÍA: Distribución porcentual de la fecundidad       | 61 |
| Tabla 35: DEMOGRAFÍA: Tasa global de Fecundidad                      | 62 |
| Tabla 36: DEMOGRAFÍA: Hipótesis de crecimiento migratorio            | 63 |
| Tabla 37: DEMOGRAFÍA: Provecciones Demográficas                      | 65 |

| Tabla 38: PAUTE: Proyecciones Demográficas -ÁREA URBANA         | 68          |
|-----------------------------------------------------------------|-------------|
| Tabla 39: CRECIMIENTO POBLACIONAL EN EL AREA URBAN              | A DE PAUTE  |
| CONSIDERANDO LIMITE URBANO                                      | 70          |
| Tabla 40: : PORCENTAJE DE DENSIDAD POBLACIONAL SEGÚN            | SECTORES 72 |
| Tabla 41: Resumen de Abonados y Consumo mensual de agua potable | 74          |
| Tabla 42: Cálculo del Consumo Promedio más Pérdidas de          | 75          |
| Tabla 43: determinación del valor de M, obtenido en los         | 78          |
| Tabla 44: ECUACIONES IDF PARA PAUTE                             | 82          |
| Tabla 45: COEFICIENTE DE ESCURRIMIENTO                          | 84          |
| Tabla 46: COEFICIENTES DE ESCORRENTIA PARA LA DETERMI           | NACION DEL  |
| CAUDAL PLUVIAL PARA EL ALCANTARILLADO DE PAUTE                  | 84          |
| Tabla 47: COEFICIENTE DE RUGOSIDAD EMPLEADO                     | 85          |
| Tabla 48: DIAMETROS MÌNIMOS DE LA TUBERIA PLASTICA              | 95          |
| Tabla 49: INTERCEPTOR MARGINAL – LONGITUD DE T                  | ΓUBERÍAS A  |
| INSTALAR                                                        |             |
| Tabla 50: INTERCEPTOR MARGINAL – No. DE POZOS                   | 100         |
| Tabla 51: ALIVIADEROS DEL interceptor marginal de paute         | 101         |
| 1 6 1                                                           |             |

### LISTA DE IMÁGENES

| IMAGEN | 1Foto 1.4.1: Panorámica de la Ciudad de Paute              | 4    |
|--------|------------------------------------------------------------|------|
| IMAGEN | 2: División Geopolítica- Provincia del Azuay por Cantones  | 6    |
| IMAGEN | 3: CANTÓN PAUTE, DIVISIÓN GEOPOLÍTICA                      | 7    |
| IMAGEN | 4: MAPA DE UBICACIÓN DE BARRIOS DE LA CIUDAD DE PAU        | TE 8 |
| IMAGEN | 5: MAPA DE COBERTURA DEL SISTEMA                           | 23   |
| IMAGEN | 6: MAPA DE REDES Y TIPO DE DESCARGAS AL RIO PAUTE          | 32   |
| IMAGEN | 7: DEMOGRAFÍA: Población de Paute,                         | 53   |
| IMAGEN | 8: DEMOGRAFÍA: Población de Paute, según censo 1990 – 2010 | 55   |
| IMAGEN | 9: DEMOGRAFÍA: Estructura de la población, año 2010        | 57   |
| IMAGEN | 10: DEMOGRAFÍA: Proyecciones demográficas                  | 66   |
| IMAGEN | 11: ZONAS CENSALES Y LIMITE DEL PROYECTO                   | 67   |

# DISEÑO DEFINITIVO DEL INTERCEPTOR PARA EL CANTÓN PAUTE DESDE ZHUMIR HASTA YUMANCAY

#### CAPÍTULO 1

#### **ANTECEDENTES**

#### 1.1. INTRODUCCIÓN

El Gobierno Autónomo Descentralizado del cantón Paute de la provincia del Azuay, en su propósito de mejorar la calidad de vida de sus habitantes, realizó un convenio con la Universidad Católica de Cuenca (UCACUE), para la realización de los estudios del "Diseño definitivo del Interceptor para el Cantón Paute, desde Zhumir hasta el Yumancay, provincia del Azuay". La construcción del interceptor, tiende a que los habitantes cuenten con un servicio viable desde el punto de vista técnico, económico y ambiental.

Debido a que existe un crecimiento significativo en la población y además el Cantón Paute requiere de la construcción de un colector que le permita conducir todas las aguas servidas y pluviales que se producen en sus diferentes zonas, a través de una tubería que intercepte tanto las aguas lluvias como las aguas servidas de cada uno de los domicilios del cantón Paute, con la finalidad de mejorar no solo en el saneamiento de la ciudad sino que también ayude para que la población tenga una vida más digna y saludable.

Una ciudad que no tenga un sistema que intercepte sus aguas residuales puede tener un grave problema en la población, ya que puede provocar un problema de saneamiento ambiental, así como graves problemas en la salud de la población actual y futura del cantón Paute.

#### 1.2. **JUSTIFICACIÓN**

El GAD municipal del cantón Paute consciente de precautelar los recursos naturales existentes, así como de garantizar la utilización del recurso hídrico, precautelar la salud de los ciudadanos de Paute, quiere realizar la descontaminación de las quebradas y del río del mismo nombre, minimizar los efectos de inundación producidos en ciertos sectores por las lluvias, dotar de servicio de alcantarillado (combinado) hacia zonas de la ciudad que no lo poseen, mejorar la calidad de dicho servicio que en algunas zonas es deficiente, de esta manera encaminar un desarrollo sostenible y sustentable de la ciudad de Paute, mediante los diseños y posterior construcción de las diferentes soluciones planteadas de los sistemas de alcantarillado.

El GAD municipal del cantón Paute ante la problemática mencionada anteriormente en la ciudad de Paute, por el sistema de Alcantarillado, decidió realizar Estudio a nivel de Diseño del Interceptor para el Cantón Paute provincia del Azuay, desde Zhumir hasta el sector Salesianos para lo cual realizo un convenio con la Universidad Católica de Cuenca para realizar dichos estudios.

El GAD municipal del cantón Paute por medio de su personal técnico entregó a mi persona, los planos de diseño de los estudios realizados por el Ing. César Verdugo en el año 1994, en donde se pudo verificar las zonas que ya han sido construidas y que en muchas ocasiones diferían de los diseños.

Esta documentación entregada de manera personal a mi persona, sirvió de base para la evaluación de la red de alcantarillado existente.

Después de haber evaluado la red de alcantarillado, en la primera fase, mediante el catastrado de los pozos de revisión de alcantarillado; nivelación y ubicación topográfica de éstos, y su evaluación física e hidráulica. Estos resultados nos sirvieron de base, para establecer la solución de las diferentes redes de recolección de aguas combinadas del cantón Paute.

#### 1.3. OBJETIVOS

#### 1.3.1. OBJETIVO GENERAL

Diseño del colector para la ciudad de Paute, marginal al rio Paute, desde Zhumir hasta el sector de Yumancay.

#### 1.3.2. OBJETIVOS ESPECÍFICOS

Análisis de la problemática actual de la ciudad de Paute.

Análisis de alternativas de solución aplicadas al sistema de alcantarillado de la ciudad de Paute.

Caudal Pluvial.

Análisis de caudales de ingreso al colector.

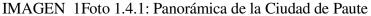
Diseño del colector.

Ubicación y Diseño de Aliviaderos de caudal para aguas lluvias.

#### 1.4. DESCRIPCIÓN DEL ÁREA DE PROYECTO

### 1.4.1. DESCRIPCIÓN GEOGRÁFICA Y CARACTERÍSTICAS DEL ÁREA DE ESTUDIO CON REFERENCIA A SU USO

#### 1.4.1.1. <u>Localización</u>


El área del proyecto está constituida por la ciudad de Paute, particularmente por el área urbana, la misma que alcanza a una extensión total de 470 hectáreas. La

población total dentro del área urbana censal determinada en el último censo de población y vivienda del INEC de Noviembre del 2010, es de 7.268 habitantes. Las coordenadas geográficas del emplazamiento de la Ciudad son las siguientes:

Longitud Oeste: 78°45′41.24″

Latitud Sur: 02°46′45.96′′

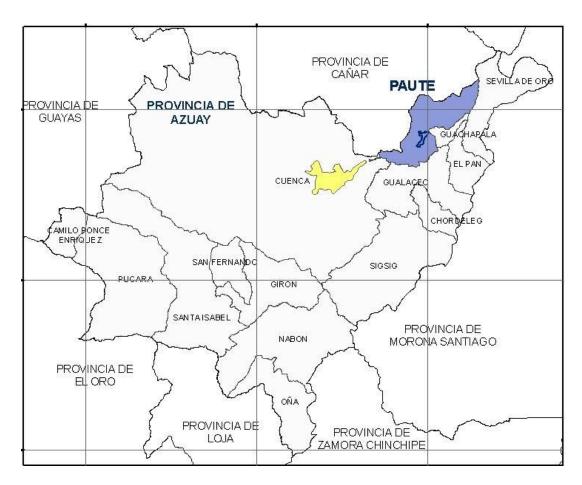
Altitud: 2.188 m.s.n.m





Fuente y Elaboración: GAD MUNICIPAL DE PAUTE, PROPIA

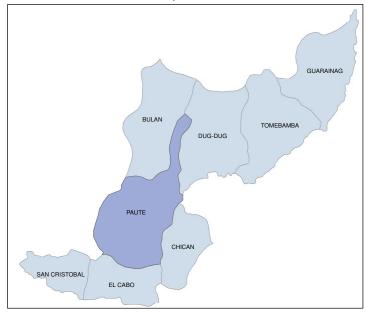
La ciudad de Paute se encuentra ubicada a la margen izquierda del río que lleva su mismo nombre en la zona central del cantón y se encuentra a una distancia aproximada de 42 km. de la ciudad de Cuenca hacia el oriente. El cantón tiene una superficie de 270.78 km².


La economía de Paute se basa en la agricultura, destacándose la producción de maíz, fréjol, caña de azúcar, huertos frutales y además es muy conocido por sus cultivos de flores, actividad que genera empleo a aproximadamente 800 trabajadores. El turismo es otra de las principales actividades desarrolladas en la ciudad, gracias a sus extensas playas junto al río Paute, su importante complejo hotelero y recreacional, siendo esta ciudad muy visitada por turistas nacionales y extranjeros.

#### **1.4.2. LÍMITES**

La ciudad de Paute es la cabecera del cantón del mismo nombre. El cantón Paute, limita:

- Al norte, con el cantón Azogues
- Al Sur, con los cantones Cuenca y Gualaceo
- Al Este, con los cantones Cuenca y Azogues
- Al Oeste, con los cantones Guachapala y Sevilla de Oro.


IMAGEN 2: División Geopolítica- Provincia del Azuay por Cantones



FUENTE: INEC, 2010 ELABORACIÓN: GAD DE PAUTE, PROPIA

El Cantón Paute, está dividido en 1 parroquia urbana y 7 parroquias rurales:

IMAGEN 3: CANTÓN PAUTE, DIVISIÓN GEOPOLÍTICA



FUENTE: INEC, 2010 ELABORACIÓN: GAD DE PAUTE, PROPIA

#### Parroquia Urbana:

Parroquia Paute 4.979 Ha

Ciudad de Paute 470 Ha.

La ciudad de Paute a su vez está conformadas por los siguientes barrios:

Virgen Pamba Pancalle
Calvario La Playa
El Centenario Las Peñas
Cdla. Don Bosco 11 de Febrero
Luntur Pirincay

Centro Zhumir
Los Sauces Tutucán

Los barrios antes detallados se muestran en la siguiente ilustración:

96900002°48'0"S 748000<sup>78°46'0"W</sup> 

IMAGEN 4: MAPA DE UBICACIÓN DE BARRIOS DE LA CIUDAD DE PAUTE 7480000 747000 74800078°480°W 749000 750000 75

Elaboración y fuente: GAD DE PAUTE

#### Parroquias rurales:

| Bulán         | 3.924 Ha |
|---------------|----------|
| Dug Dug       | 3.842 Ha |
| Chicán        | 2.924 Ha |
| El Cabo       | 2.231 Ha |
| Guarainag     | 3.567 Ha |
| San Cristóbal | 1.717 Ha |
| Tomebamba     | 3.894 Ha |

#### 1.4.2.1. <u>Características de la Zona</u>

La ciudad de Paute está emplazada dentro de un valle rodeada de una topografía bastante irregular y se encuentra rodeado por las siguientes montañas: al norte Rumicruz, al nor-oeste Tuntac y al oeste Pucaloma, ésta última bastante accidentada.

Su topografía es variable, típica de los Andes, las pendientes dominantes son de alrededor del 7 % en las zonas bajas (E), y de más del 20% en las zonas altas (W).

En esta zona existen varias corrientes naturales de agua: dos quebradas que nacen en las laderas del Oeste de la ciudad: Chitayacu y Pirincay y la Q. Yumancay y el Río Cutilcay que nacen al Noroeste de la ciudad, todos estos descargan sus aguas en el río Paute.

#### 1.4.2.2. Clima

Paute se encuentra dentro de la región Ecuatorial Mesotérmico Semi-Húmedo, clima más frecuente en los espacios interandinos, en donde las Iluvias varían entre 500 y 2.000 milímetros. Paute se caracteriza por una temperatura media anual de entre 12 y 20°C, una humedad relativa de 65 y 85% y una insolación de entre 1.000 y 2.000 horas anuales.

#### 1.4.2.3. Vías de comunicación

La principal vía de comunicación es la Transversal Austral que cubre los tramos "El Descanso – Paute – Amaluza - Límite con la Provincia de Morona Santiago", arteria vial que lo conecta con la Ciudad de Cuenca, cabecera Provincial del Azuay, a través de la Panamericana Sur, la misma que a su vez se conecta con la autopista Cuenca – Azogues, y además ésta vía sirve para comunicarse con ciudades orientales como son Méndez, Sucúa y Macas.

#### 1.4.2.4. Conectividad

El Cantón Paute, cuenta con el servicio de telefonía móvil y fija, pudiéndose observar que el uso de teléfono convencional tiene poca cobertura, convirtiendo a Paute en uno de los cantones con más baja cobertura en la provincia del Azuay, apenas con el 32,73%; en cambio el uso de telefonía móvil tiene una cobertura en el área urbana del 72,79%.

#### 1.4.2.5. <u>Usos del Suelo</u>

En el área de estudio existen los principales usos de suelo:

- Urbano: considerándose dentro de éste grupo viviendas, parques, hospitales, centros educativos entre otros.
  - Mixto (urbano con cultivo): viviendas con cultivos pequeños.
  - Agrícola: cultivo de flores, árboles frutales y hortalizas.

# 1.4.3. DESCRIPCIÓN GENERAL DE LAS CARACTERÍSTICAS SOCIO-ECONÓMICAS Y DE SALUD DE LA POBLACIÓN

1.4.3.1. Población del Cantón Paute en relación con la Provincia y el País
La Población del Cantón Paute, representa el 3,58 % de la población total de la
Provincia y el 0,18% de la Población del país; mientras que la Provincia del Azuay,
representa el 4,92% de la población del país.

La parroquia Paute (cabecera cantonal) tienen una población de 9.850 habitantes, lo que representa el 38.64% de la población total del cantón

Tabla 1: Representatividad poblacional provincia/ país

|                     |                     | _           |                               |            |
|---------------------|---------------------|-------------|-------------------------------|------------|
| No. Área Geográfica |                     | Habitantes  | Representatividad poblacional |            |
| 140.                | 7 Tod Googranda     | riabitantes | Nacional                      | Provincial |
| 1                   | Ecuador             | 14.483.449  |                               |            |
| 2                   | Provincia del Azuay | 712.127     | 4,92 %                        |            |
| 3                   | Cantón Paute        | 25.494      | 0,18                          | 3,58       |
| 4                   | Parroquia Paute     | 9.850       | 0,07                          | 1,38       |

FUENTE: INEC, 2010 ELABORACIÓN: GAD DE PAUTE, PROPIA

#### 1.4.3.2. <u>Caracterización de la población</u>

En la parroquia Paute, única parroquia urbana del cantón, la población predominante, según la auto identificación según cultura y costumbres encontrada en la base de datos del INEC 2010 es la siguiente: Mestiza con el 88,61%, afro-ecuatoriano con el 3% y Blanca con el 6,64%. Cabe mencionar que la población indígena en Paute es bastante baja, tan solo alcanza el 0,62%.

#### 1.4.3.3. Población según ubicación geográfica (urbana y rural)

El 73,36 % de la población del Cantón Paute se encuentra ubicada en el área urbana y el 26,64% en el área rural, manteniendo una densidad poblacional promedio de 37,62 Habitantes/Km<sup>2</sup>.

Tabla 2: : Población según área geográfica

| Área   | Habitantes | %      |
|--------|------------|--------|
| Urbana | 7.226      | 73,36  |
| Rural  | 2.624      | 26,64  |
| TOTAL  | 9.850      | 100,00 |

FUENTE: INEC, CENSO DE POBLACIÓN Y VIVIENDA 2010 ELABORACIÓN: GAD DE PAUTE, PROPIA

#### 1.4.3.4. Estado Civil de la Población Adulta

El patrón nupcial de las personas es un rasgo de interés ya que permite analizar la relación de la población con las leyes o costumbres matrimoniales del país, además es

una de las variables utilizadas en diferentes campos para establecer sus estrategias de trabajo tanto en el sector público como en el privado.

En la ciudad de Paute, el estado civil de la población adulta predominante es CASADO con un porcentaje de 40.54% y con menor porcentaje DIVORCIADOS: 2.60%. A continuación se presenta los porcentajes del estado civil de la población adulta:

Tabla 3: ESTADO CIVIL DE LA POBLACIÓN ADULTA

| Estado Civil    | Sexo   |       | Total | (%)    |  |
|-----------------|--------|-------|-------|--------|--|
|                 | Hombre | Mujer | Total |        |  |
| 1. Casado/a     | 1041   | 1156  | 2197  | 40,54  |  |
| 2.Unido/a       | 310    | 331   | 641   | 11,83  |  |
| 3.Separado/a    | 52     | 106   | 158   | 2,92   |  |
| 4. Divorciado/a | 45     | 96    | 141   | 2,60   |  |
| 5. Viudo/a      | 35     | 183   | 218   | 4,02   |  |
| 6. Separado/a   | 987    | 1077  | 2064  | 38,09  |  |
| Total           | 2470   | 2949  | 5419  | 100,00 |  |

FUENTE: INEC, CENSO DE POBLACIÓN Y VIVIENDA 2010 ELABORACIÓN: GAD DE PAUTE, PROPIA

#### 1.4.4. INDICADORES ECONÓMICOS

La Población económicamente Activa (PEA) es de 4.355 habitantes, esto representa el 44% de la población total del Cantón Paute.

#### 1.4.4.1. Categorías de Ocupación de la Población Activa

El análisis de la Población Económicamente Activa permite diferenciar el tipo de ocupación y la diversidad socioeconómica que explica, de alguna manera, las desiguales condiciones de vida de los ecuatorianos. En el siguiente gráfico se presenta la categoría de ocupación de la población urbana de Paute con su respectivo porcentaje:

Tabla 4: CATEGORÍAS DE Ocupación DE LA POBLACIÓN ECONÓMICAMENTE ACTIVA

| Cot  | Categoría en la Ocupación                |       |       | Total | %      |
|------|------------------------------------------|-------|-------|-------|--------|
| Cai  |                                          |       | Mujer | Total | %      |
| 1.   | Empleado/a u obrero/a del Sector Público | 247   | 187   | 434   | 13,37  |
| 2.   | Empleado/a u obrero/a privado            | 613   | 387   | 1000  | 30,81  |
| 3.   | Jornalero/a o peón                       | 176   | 58    | 234   | 7,21   |
| 4.   | Patrono/a                                | 63    | 59    | 122   | 3,76   |
| 5.   | Socio/a                                  | 53    | 20    | 73    | 2,25   |
| 6.   | Cuenta propia                            | 531   | 599   | 1.130 | 34,81  |
| 7.   | Trabajador/a no remunerado               | 31    | 25    | 56    | 1,73   |
| 8.   | Empleado/a doméstico/a                   | 12    | 87    | 99    | 3,05   |
| 9.   | Se ignora                                | 36    | 62    | 98    | 3,01   |
| Tota | al                                       | 1.762 | 1.484 | 3.246 | 100,00 |

Fuente: INEC, Censo de Población y Vivienda 2010 Elaboración: GAD DE PAUTE, PROPIA

La mayoría de la población económicamente activa (34.81%) labora por cuenta propia o tiene negocios particulares.

#### 1.4.4.2. Rama de Actividad

La descripción de la Rama de Actividad permite identificar la categoría de ocupación de las personas de la población activa que se encuentran empleadas. En la tabla 1.4.5 se detallan las Ramas de ocupación de la población urbana de Paute con su respectivo porcentaje:

Tabla 5: Rama de Actividad de la Población Urbana DEL CANTÓN PAUTE

| Rama de Actividad                                                               | Sexo   |       | Total | %      |
|---------------------------------------------------------------------------------|--------|-------|-------|--------|
| nama de Actividad                                                               | Hombre | Mujer | Tolai | /0     |
| Agricultura, ganadería, silvicultura y pesca                                    | 442    | 341   | 783   | 23,52  |
| Explotación de minas y canteras                                                 | 18     | 3     | 21    | 0,63   |
| Industrias manufactureras                                                       | 219    | 151   | 370   | 11,11  |
| 4. Suministro de electricidad, gas, vapor y aire acondicionado                  | 7      | 3     | 10    | 0,30   |
| <ol> <li>Distribución de agua, alcantarillado y gestión de deshechos</li> </ol> | 7      | -     | 7     | 0,21   |
| 6. Construcción                                                                 | 210    | 8     | 218   | 6,55   |
| 7. Comercio al por mayor y menor                                                | 275    | 375   | 650   | 19,53  |
| Transporte y almacenamiento                                                     | 175    | 16    | 191   | 5,74   |
| Actividades de alojamiento y servicio de comidas                                | 51     | 94    | 145   | 4,36   |
| 10. Información y comunicación                                                  | 15     | 19    | 34    | 1,02   |
| 11. Actividades financieras y de seguros                                        | 14     | 23    | 37    | 1,11   |
| 12. Actividades inmobiliarias                                                   | 1      | 1     | 2     | 0,06   |
| 13. Actividades profesionales, científicas y técnicas                           | 23     | 22    | 45    | 1,35   |
| 14. Actividades de servicios administrativos y de apoyo                         | 17     | 10    | 27    | 0,81   |
| 15. Administración pública y defensa                                            | 123    | 65    | 188   | 5,65   |
| 16. Enseñanza                                                                   | 57     | 110   | 167   | 5,02   |
| 17. Actividades de la atención de la salud humana                               | 21     | 42    | 63    | 1,89   |
| 18. Artes, entretenimiento y recreación                                         | 3      | 3     | 6     | 0,18   |
| 19. Otras actividades de servicios                                              | 37     | 36    | 73    | 2,19   |
| 20. Actividades de los hogares como empleadores                                 | 5      | 94    | 99    | 2,97   |
| 21. No declarado                                                                | 42     | 68    | 110   | 3,30   |
| 22. Trabajador nuevo                                                            | 49     | 34    | 83    | 2,49   |
| Total                                                                           | 1811   | 1518  | 3329  | 100,00 |

Fuente: INEC, Censo de Población y Vivienda 2010 Elaboración: GAD DE PAUTE, PROPIA

#### 1.4.4.3. Actividad Realizada la Última Semana Previa al Censo.

La actividad que ha realizado la población de Paute urbano, una semana antes de que se lleve a cabo el Censo de Población y Vivienda 2010, se presenta a continuación:

Tabla 6: ACTIVIDADES REALIZADAS LA ULTIMA SEMANA PREVIA AL CENSO

| QUE HIZO LA SEMANA PASADA                                        | Hombre | Mujer | Total | %      |
|------------------------------------------------------------------|--------|-------|-------|--------|
| Trabajó al menos una hora                                        | 1.464  | 1.167 | 2.631 | 40,62  |
| No trabajó pero SI tiene trabajo                                 | 49     | 31    | 80    | 1,24   |
| Al menos una hora fabricó algún producto o brindó algún servicio | 71     | 67    | 138   | 2,13   |
| Al menos una hora ayudó en algún negocio o trabajo de un         |        |       |       |        |
| familiar                                                         | 58     | 89    | 147   | 2,27   |
| Al menos una hora realizó labores agrícolas o cuidó animales     | 105    | 123   | 228   | 3,52   |
| Es Cesante; Buscó trabajo habiendo trabajado antes y está        |        |       |       |        |
| disponible para trabajar                                         | 15     | 7     | 22    | 0,34   |
| No Trabajó                                                       | 1.260  | 1.971 | 3.231 | 49,88  |
| Total                                                            | 3.022  | 3.455 | 6.477 | 100,00 |

Fuente: INEC, Censo de Población y Vivienda 2010 Elaboración: GAD DE PAUTE, PROPIA

#### 1.4.5. INDICADORES EDUCATIVOS

Según datos obtenidos del último censo de población y vivienda realizado en el Ecuador, el Azuay es una de la provincia con más bajo índice de analfabetismo gracias a que se han ejecutado varios programas de educación popular por parte de la Prefectura del Azuay y de la Dirección Provincial de Educación.

Según datos obtenidos del último censo de población y vivienda realizado en el Ecuador, el índice de analfabetismo es el siguiente:

Tabla 7: representatividad del índice de analfabetismo

| No. | Analfabetismo   | Porcentaje (%) |
|-----|-----------------|----------------|
| 1   | Ecuador         | 6,80           |
| 2   | Azuay           | 6,66           |
| 3   | Cantón Paute    | 12,21          |
| 4   | Parroquia Paute | 8,23           |

Fuente: INEC, Censo de Población y Vivienda 2010

#### 1.4.5.1. Sabe Leer y Escribir la Población

El 92,51% de la población de Paute sabe leer y escribir y el 7,49 % de la población no cuenta con ninguna instrucción ya que no sabe leer y escribir, de acuerdo a lo visto en la tabla anterior.

Tabla 8: PORCENTAJE DE LA POBLACIÓN URBANA DE PAUTE <u>QUE SABE LEER Y ESCRIBIR</u>

| Sabe leer | Sexo   |       | Total | Porcentaje |
|-----------|--------|-------|-------|------------|
| escribir  | Hombre | Mujer | Total | (%)        |
| Si        | 2.852  | 3.140 | 5.992 | 92,51      |
| No        | 170    | 315   | 485   | 7,49       |
| Total     | 3.022  | 3.455 | 6.477 | 100,00     |

Fuente: INEC, Censo de Población y Vivienda 2010 Elaboración: GAD DE PAUTE, PROPIA

#### 1.4.5.2. *Oferta educativa*

El Cantón Paute dispone de 54 instituciones educativas en los niveles de Educación Inicial, Básica y Bachillerato

Tabla 9: INSTITUCIONES EDUCATIVAS DEL CANTÓN PAUTE

| Cantón | Parroquia     | Numero de instituciones |
|--------|---------------|-------------------------|
|        | BULAN         | 6                       |
| PAUTE  | CHICAN        | 7                       |
|        | DUG DUG       | 3                       |
|        | EL CABO       | 7                       |
| 17.012 | GUARAINAG     | 5                       |
|        | PAUTE         | 19                      |
|        | SAN CRISTOBAL | 3                       |
|        | TOMEBAMBA     | 4                       |
| TOTAL  | _             | 54                      |

Fuente: "Archivo Maestro de Instituciones Educativas -AMIE", Tabla Resumen 2010

Elaboración: GAD DE PAUTE, PROPIA

Del total de instituciones educativas del Cantón Paute, 19 se encuentran ubicadas en el área urbana (Parroquia Paute) equivalente al 35,19 %. En su mayoría (45%) son instituciones fiscales, es decir, regentadas y financiadas por el Estado Ecuatoriano.

De acuerdo a sus niveles de educación, el área urbana del cantón Paute dispone de 17 instituciones educativas de Nivel Inicial y Básico y 6 instituciones educativas de Bachillerato (Ver numeral 4.4.1). En éstos centros educativos prestan sus servicios un total de 246 docentes; de los cuales 214 son hombres y 32 son mujeres.

El número total de estudiantes matriculados en las instituciones se presenta en la siguiente tabla:

Tabla 10: ESTUDIANTES MATRICULADOS EN INSTITUCIONES EDUCATIVAS DE LA ZONA URBANA DEL CANTÓN PAUTE

| Cantón | Parroquia | Hombres | Mujeres | Total |
|--------|-----------|---------|---------|-------|
| Paute  | Paute     | 2.110   | 2.193   | 4.303 |

Fuente: "Archivo Maestro de Instituciones Educativas -AMIE", Tabla Resumen 2010

Elaboración: GAD DE PAUTE, PROPIA

#### 1.4.5.3. Nivel de Instrucción

Según los datos obtenidos en el último censo de población y vivienda, la zona urbana de Paute el 95,99% tiene algún tipo de instrucción y tan solo el 4,01% no lo tiene. Los Niveles de Instrucción más altos son: Primario (37,19%), Secundario (24,52%) y Educación Básica (8,69%). A continuación se presentan todos los Niveles de Instrucción registrados en el cantón con sus respectivos porcentajes:

Tabla 11: PORCENTAJE DE LOS NIVELES DE INSTRUCCIÓN EN LA ZONA URBANA DE PAUTE

| Nivel de instrucción           | Hombre | Mujer | Total | Porcentaje<br>(%) |
|--------------------------------|--------|-------|-------|-------------------|
| Ninguno                        | 83     | 177   | 260   | 4,01              |
| Centro de Alfabetización/(EBA) | 8      | 21    | 29    | 0,45              |
| Preescolar                     | 24     | 39    | 63    | 0,97              |
| Primario                       | 1.127  | 1.282 | 2.409 | 37,19             |
| Secundario                     | 760    | 828   | 1.588 | 24,52             |
| Educación Básica               | 266    | 297   | 563   | 8,69              |
| Bachillerato - Educación Media | 271    | 310   | 581   | 8,97              |
| Ciclo Postbachillerato         | 60     | 57    | 117   | 1,81              |
| Superior                       | 355    | 372   | 727   | 11,22             |
| Postgrado                      | 21     | 15    | 36    | 0,56              |
| Se ignora                      | 47     | 57    | 104   | 1,61              |
| Total                          | 3.022  | 3.455 | 6.477 | 100,00            |

Fuente: INEC, Censo de Población y Vivienda 2010 Elaboración: GAD DE PAUTE, PROPIA

#### 1.4.5.4. Asistencia a Establecimientos de Enseñanza

De la población urbana de la parroquia Paute tan solo el 37,59% asiste a un centro de enseñanza ya sea del cantón o de la provincia, el 62,41% no asiste a ningún tipo de centro educativo, como se puede ver en la tabla 1.4.12

Tabla 12: PORCENTAJE DE ASISTENCIA A ESTABLECIMIENTOS DE ENSEÑANZA

| Asiste a un     | SEXO   |         |       | Porcentaje |  |
|-----------------|--------|---------|-------|------------|--|
| establecimiento | Hombre | Mujer   | Total | (%)        |  |
| de enseñanza    | Hombre | iviujei |       | ( /0)      |  |
| Si              | 1212   | 1223    | 2.435 | 37,59      |  |
| No              | 1810   | 2232    | 4.042 | 62,41      |  |
| Total           | 3022   | 3455    | 6.477 | 100,00     |  |

Fuente: INEC, Censo de Población y Vivienda 2010 Elaboración: GAD DE PAUTE, PROPIA

#### 1.4.6. INDICADORES DE SALUD

En base a datos obtenidos por el Sistema Integrado de Indicadores Sociales del Ecuador, los principales Índices de Salud de la parroquia urbana Paute son los siguientes

Tabla 13: INDICE DE SALUD EN LA PARROQUIA URBANA DE PAUTE

| Descripción                           | Azuay<br>% | Paute % |
|---------------------------------------|------------|---------|
| Tasa global de fecundidad             | 2,20       | 2,32    |
| Población con discapacidad            | 5,25       | 6,63    |
| ** Tasa médicos por 10.000 habitantes | 30,55      | 50,76   |
| Tasa de natalidad                     | 19,50      | 21,14   |
| *** Tasa de mortalidad infantil       | 7,92       | 0,00    |
| *** Tasa de mortalidad de la niñez    | 11,52      | 0,00    |
| * Tasa de camas por 10.000 hab        | 20,54      | 6,80    |

Fuente: Sistema Integrado de Indicadores Sociales del Ecuador SIISE-2010 Elaboración: GAD DE PAUTE, PROPIA

Dentro del área de influencia del proyecto se encuentra el área de salud No. 6-Paute, un hospital básico, que presta únicamente los siguientes servicios médicos: medicina general, cirugía general, ginecología y pediatría. Según los registros de ésta casa de salud, las causas de decesos presentados son debido a: Neumonía, Insuficiencia renal y accidente cerebro vascular.

#### 1.4.7. INDICADORES DE LAS VIVIENDAS

#### 1.4.7.1. Condiciones de Ocupación de las Viviendas Encuestadas

Las viviendas que fueron encuestadas en el último censo, según los datos obtenidos son ocupadas con personas presentes (70.89%), es decir que pasan permanente en la vivienda. El 11,71% de viviendas están siendo ocupados por personas cuya permanencia no es constante. En la siguiente tabla se detallan las condiciones de ocupación de las viviendas en la zona urbana de Paute:

Tabla 14: CONDICIONES DE OCUPACIÓN DE VIVIENDAS ENCUESTADAS EN LA ZONA URBANA DE PAUTE

| Condición de Ocupación         | Total | Porcentaje (%) |
|--------------------------------|-------|----------------|
| Ocupada con personas presentes | 1.943 | 70,89          |
| Ocupada con personas ausentes  | 321   | 11,71          |
| Desocupada                     | 365   | 13,31          |
| En construcción                | 112   | 4,09           |
| Total                          | 2.741 | 100,00         |

Fuente: INEC, Censo de Población y Vivienda 2010 Elaboración: GAD DE PAUTE, PROPIA

#### 1.4.7.2. <u>Tenencia de la Vivienda</u>

En la parroquia Paute, la tenencia de la vivienda es muy variada, el 3,87% de encuestados cuentan con viviendas propias, el 37,70% cuentan con viviendas las cuales ya han sido pagadas totalmente y el otro 58,43% tiene diferente tipo de tenencia como se puede ver en la siguiente tabla:

Tabla 15: TENENCIA DE LA VIVIENDA EN LA ZONA URBANA DE PAUTE

|                                                    |       | Porcentaje |
|----------------------------------------------------|-------|------------|
| Tenencia de la vivienda                            | Total | (%)        |
| Propia y totalmente pagada                         | 751   | 37,70      |
| Propia y la está pagando                           | 201   | 10,09      |
| Propia (regalada, donada, heredada o por posesión) | 77    | 3,87       |
| Prestada o cedida (no pagada)                      | 235   | 11,80      |
| Por servicios                                      | 60    | 3,01       |
| Arrendada                                          | 662   | 33,23      |
| Anticresis                                         | 6     | 0,30       |
| Total                                              | 1.992 | 100,00     |

FUENTE: INEC, CENSO DE POBLACIÓN Y VIVIENDA 2010 ELABORACIÓN: GAD DE PAUTE, PROPIA

# 1.5. INFRAESTRUCTURA BÁSICA EXISTENTE EN LA CIUDAD DE PAUTE

#### 1.5.1. INFRAESTRUCTURA PARA SERVICIOS A LA SOCIEDAD

Entre la infraestructura de servicio social existente para población en la ciudad de Paute podemos destacar varios centros de educación, bancos, retenes de policía, terminal terrestre, hoteles, restaurantes, iglesias. A continuación se resume los locales o centros más importantes dentro de la zona del proyecto:

Centros Educativos: las instituciones que prestan sus servicios educativos se presentan a continuación:

Tabla 16: CENTROS EDUCATIVOS DE PAUTE

| Educación Inicial, Básica y<br>Bachillerato | Educación Inicial y<br>Básica |  |
|---------------------------------------------|-------------------------------|--|
| 26 de Febrero                               | Isidro Ayora                  |  |
| Ciudad de Paute                             | Francisco Alvarado Cobos      |  |
| Julio María Matovelle                       | San José de Paute             |  |
| Los Olivos                                  | Nuestra Señora de Fátima      |  |
| LOS OTIVOS                                  | Simón Bolívar                 |  |
| José María Velaz S.J. Ext. 53 A             | Nicolás Vásquez Muñoz         |  |
| UOSC IVIANA VOIAZ O.S. EXT. SO A            | Marcelo Crespo Vega           |  |

FUENTE: "ARCHIVO MAESTRO DE INSTITUCIONES EDUCATIVAS - AMIE", TABLA RESUMEN 2010

#### Infraestructuras de seguridad

- Cuerpo de Bomberos
- Comando Policial

#### Infraestructura de Servicios

- Terminal terrestre
- Registro Civil-Comisaría Nacional
- Restaurantes.
- Hosterías.
- Centros turísticos.
- Parques lineales a las orillas del río Paute.
- Mercados (Mercado 26 de Febrero y mercado San José).
- Bancos: Banco del Austro y Banco del Pichincha.
- Cooperativas de Ahorro y Crédito: Juventud Ecuatoriana Progresista

#### (JEP), Jardín Azuayo.

Infraestructura de Salud

- Hospital Cantonal
- Centro Gerontológico

#### Servicios Básicos

La cobertura de los servicios eléctrico y telefónico ha sido tomada del último censo de Población y Vivienda 2010 y se presentan en los siguientes cuadros:

Servicio Eléctrico: la cobertura de éste servicio es bastante alta, el 98.97%
 de la población recibe éste servicio dotado por la Empresa Eléctrica Regional
 CENTROSUR (ver Tabla 17 16).

Tabla 17: COBERTURA DEL SERVICIO Eléctrico EN PAUTE URBANO

| Procedencia de luz eléctrica                 | Casos | %      |
|----------------------------------------------|-------|--------|
| Red de empresa eléctrica de servicio público | 1.923 | 98,97  |
| Generador de luz (Planta eléctrica)          | 10    | 0,52   |
| Otro                                         | 1     | 0,05   |
| No tiene                                     | 9     | 0,46   |
| Total                                        | 1.943 | 100,00 |

FUENTE: INEC, CENSO DE POBLACIÓN Y VIVIENDA 2010 ELABORACIÓN: GAD DE PAUTE, PROPIA

- Servicio Telefónico Convencional: la Empresa de Telecomunicaciones PACIFICTEL, es la encargada de prestar el servicio de telefonía pública en la ciudad de Paute. La cobertura de éste servicio es bastante baja según se puede ver en la siguiente tabla:

Tabla 18: COBERTURA DE SERVICIO telefónico EN LA ZONA URBANA DE LA PARROQUIA PAUTE

| Disponibilidad de teléfono convencional | Casos | %      |
|-----------------------------------------|-------|--------|
| Si                                      | 652   | 32,73  |
| No                                      | 1.340 | 67,27  |
| Total                                   | 1.992 | 100,00 |

FUENTE: INEC, CENSO DE POBLACIÓN Y VIVIENDA 2010 ELABORACIÓN: GAD DE PAUTE, PROPIA

## 1.5.2. INFRAESTRUCTURA SANITARIA

Como infraestructura básica se cuenta con agua potable y alcantarillado, en la gran parte de la zona del proyecto, estimándose coberturas del 89% para alcantarillado y agua potable (Datos tomados del censo de Población y Vivienda 2010).

• ALCANTARILLADO : Las zonas de cobertura del sistema de alcantarillado se detallan en la siguiente ilustración:

DE ALCANTARILLADO EN LA CIUDAD DE PAUTE

14700 748000 750000 751000

147000 7480000 7650000 751000

147000 760000 7650000 7650000

147000 760000 7650000 7650000

147000 760000 7650000 7650000

147000 760000 7650000 7650000

147000 7660000 7650000

147000 7660000 7650000

147000 7660000 7650000

147000 7660000 7650000

147000 7660000 7660000

147000 7660000 7660000

147000 7660000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

147000 76600000

147000 7660000

147000 7660000

147000 7660000

147000 7660000

14700

IMAGEN 5: MAPA DE COBERTURA DEL SISTEMA
DE ALCANTARILLADO EN LA CIUDAD DE PALITE

FUENTE: INEC, CENSO DE POBLACIÓN Y VIVIENDA 2010 ELABORACIÓN: GAD DE PAUTE, PROPIA

748000'8°46'0"W

- FORMAS DE ELIMINACIÓN DE LAS AGUAS SERVIDAS: la ciudad de Paute al contar con sistema de alcantarillado se puede realizar la eliminación de aguas servidas de los hogares, el porcentaje de viviendas que cuentan con conexión a la red pública de alcantarillado es de 88.57%, sin embargo existen otras formas de eliminación de aguas servidas como se muestra en la siguiente tabla:

Tabla 19: FORMAS DE ELIMINACIÓN DE LAS AGUAS SERVIDAS

| Tipo de servicio higiénico o escusado             | Total | %      |
|---------------------------------------------------|-------|--------|
| Conectado a red pública de alcantarillado         | 1.721 | 88,57  |
| Conectado a pozo séptico                          | 161   | 8,29   |
| Conectado a pozo ciego                            | 13    | 0,67   |
| Con descarga directa al mar, río, lago o quebrada | 19    | 0,98   |
| Letrina                                           | 1     | 0,05   |
| No tiene                                          | 28    | 1,44   |
| Total                                             | 1.943 | 100,00 |

FUENTE: INEC, CENSO DE POBLACIÓN Y VIVIENDA 2010 ELABORACIÓN: GAD DE PAUTE, PROPIA

- USO DEL SERVICIO HIGIÉNICO: el 99.6 % de las viviendas encuestadas cuentan con servicios higiénicos, ya sea de uso exclusivo (85.74%) o compartido con varios hogares (13.86%), el resto de hogares no cuentan con ningún tipo de servicio higiénico o escusado (Ver Tabla 20).

Tabla 20: USO DE SERVICIO HIGIÉNICO

| Servicio higiénico o escusado del hogar | Casos | %      |
|-----------------------------------------|-------|--------|
| De uso exclusivo                        | 1.708 | 85,74  |
| Compartido con varios hogares           | 276   | 13,86  |
| No tiene                                | 8     | 0,40   |
| Total                                   | 1.992 | 100,00 |

FUENTE: INEC, CENSO DE POBLACIÓN Y VIVIENDA 2010 ELABORACIÓN: GAD DE PAUTE, PROPIA

• AGUA POTABLE: El servicio de agua potable llega a la mayoría de hogares de la ciudad, aunque todavía existen hogares que no cuentan con éste servicio.

La cobertura del servicio de agua potable en la zona urbana de Paute es del 88.78%, el cual es administrado por el Gobierno Autónomo Descentralizado del Cantón Paute, a través de la Dirección de Agua Potable y Alcantarillado. A continuación se presentan los medios de abastecimiento:

Tabla 21: MEDIOS DE ABASTECIMIENTO DE AGUA POTABLE

| Procedencia principal del agua recibida | Total | %      |
|-----------------------------------------|-------|--------|
| De red pública                          | 1.725 | 88,78  |
| De pozo                                 | 44    | 2,26   |
| De río, vertiente, acequia o canal      | 160   | 8,24   |
| De carro repartidor                     | 1     | 0,05   |
| Otro (Agua Iluvia/albarrada)            | 13    | 0,67   |
| Total                                   | 1.943 | 100,00 |

FUENTE: INEC, CENSO DE POBLACIÓN Y VIVIENDA 2010 ELABORACIÓN: GAD DE PAUTE, PROPIA

El abastecimiento de agua potable a las viviendas de la zona urbana se realiza mediante las conexiones de tubería realizadas por el personal de Municipio de Paute. Los tipos de conexiones de la red pública hacia las viviendas son los siguientes:

Tabla 22: SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE

| Conexión del agua por tubería                                   | Casos | %      |
|-----------------------------------------------------------------|-------|--------|
| Por tubería dentro de la vivienda                               | 1.637 | 84,25  |
| Por tubería fuera de la vivienda pero dentro del edificio, lote |       |        |
| o terreno                                                       | 255   | 13,13  |
| Por tubería fuera del edificio, lote o terreno                  | 28    | 1,44   |
| No recibe agua por tubería sino por otros medios                | 23    | 1,18   |
| Total                                                           | 1.943 | 100,00 |

FUENTE: INEC, CENSO DE POBLACIÓN Y VIVIENDA 2010 ELABORACIÓN: GAD DE PAUTE, PROPIA

# • DISPOSICIÓN DE RESIDUOS SÓLIDOS

En cuanto al manejo de los residuos sólidos, el municipio de Paute cuenta con una ordenanza, la cual rige para toda la población del cantón y obliga a sus habitantes a realizar la debida clasificación de desechos generados para luego sean retirados por los trabajadores que realizan la recolección los días lunes, miércoles y viernes. A pesar de que cuenta con el servicio de recolección de desechos sólidos para la zona urbana principalmente, aún se puede ver otras formas de eliminación de la basura como se muestra a continuación:

Tabla 23: FORMAS DE ELIMINACIÓN DE LA BASURA

| Eliminación de la basura                | Casos | %      |
|-----------------------------------------|-------|--------|
| Por carro recolector                    | 1.848 | 95,11  |
| La arrojan en terreno baldío o quebrada | 23    | 1,18   |
| La queman                               | 56    | 2,88   |
| La entierran                            | 9     | 0,46   |
| La arrojan al río, acequia o canal      | 1     | 0,05   |
| De otra forma                           | 6     | 0,32   |
| Total                                   | 1.943 | 100,00 |

FUENTE: INEC, CENSO DE POBLACIÓN Y VIVIENDA 2010 ELABORACIÓN: GAD DE PAUTE, PROPIA

#### **CAPITULO 2**

#### TRABAJO DE CAMPO

## 2.1. LEVANTAMIENTO TOPOGRÁFICO

# 2.1.1. INFORMACIÓN TOPOGRÁFICA

Por la falta de información topográfica de la zona del proyecto (área urbana de Paute), para poder establecer las alternativas del tratamiento, así como de dimensionamientos de las distintas redes de distintas, se realizó el levantamiento topográfico del área urbana. El equipo utilizado fue una estación total marca Trimble modelo M3.

De acuerdo a los requerimientos del Gobierno Autónomo de Paute para tener una adecuada restitución de la topografía, se procedió a la ubicación de dos hitos georeferenciados en el sistema WGS84, con la finalidad de enlazarse a esta, y que todo proyecto que se realice dentro de la ciudad se georeferencie con dichos hitos.

Debido a la no existencia de una información catastral se tuvo que realizar dicho levantamiento, es decir se realizo el levantamiento predial, para proceder de manera simultánea al levantamiento topográfico. La información recopilada es necesaria para establecer las densidades urbanas existentes en la zona de la ciudad de Paute y en consecuencia para la determinación de factores de escorrentía de las aguas lluvias así como para la cuantificación de los caudales de aguas servidas a ser transportadas por las distintas redes y colectores de alcantarillado. Con la finalidad de tener mayor cantidad de sitios georeferenciados para facilidad de manejo urbanístico de la obras de planificación que se realicen en los diferentes sectores de la ciudad, el área de

planificación incluyó la ubicación de 4 puntos adicionales, de manera de contar con una poligonal constituida por 6 puntos georeferenciados.

Los levantamientos topográficos realizados fueron referenciados con la poligonal mencionada. Adicionalmente para el levantamiento topográfico se estableció una poligonal principal, a la que se fueron conectando poligonales secundarias.

De igual forma para el diseño del interceptor, adicionalmente a la topografía, se procedió a replantear en campo los lugares por donde atravesaría, luego de dicha actividad, y con un estacado cada 20 m se realizó la nivelación geométrica. La longitud total nivelada fue de **5.40 Km**.

#### 2.1.2. GEOREFERENCIACIÓN

Como se indicó anteriormente se elaboró un polígono georeferenciado en la ciudad de PAUTE, de manera de que cualquier levantamiento topográfico que se realice en la ciudad se relacione con las coordenadas de dicho polígono.

La ubicación de los puntos en el sistema WGS84, la realizo la empresa CARTOTECNIA, mediante el empleo de un GPS de alta precisión marca Locus - Ashtech. La ubicación de los puntos fue en lugares estratégicos de la ciudad, de manera que cuando uno se encuentre dentro de la urbe pueda ver por lo menos dos de los puntos de la poligonal.

Se colocaron cuatro puntos georeferenciados, más el punto de la estación base, y se georeferenció la placa del IGM junto a la pileta del parque central, la misma que ha sido determinada como BM por el IGM. En la siguiente tabla se presentan las coordenadas de los seis puntos georeferenciados que conforman la poligonal, además las coordenadas y ubicación de la estación base y del IGM de la Iglesia central.

**PUNTO** WGS - 84 SITIO **ELEVACIÓN NOMBRE ESTE** NORTE Placa Base Parque Central IGM 748.857,768 9.692.539,035 2181,465 Mirador Escalinata G-01 748.980,595 9.692.883,983 2258,228 Terraza Banco del Austro 748.853,512 2191,580 G-02 9.692.576,867 Terminal Terrestre G-03 749.547,429 9.692.625,120 2168,862 748.467,178 2258,228 Fábrica Zhumir G-04 9.691.851,546 Mirador Tuna Loma 747.181,307 9.689.412,285 2263,163 G-05

Tabla 24: RED GEODÉSICA DE LA CIUDAD DE PAUTE

Los levantamientos topográficos realizados en las distintas zonas de la ciudad han sido enlazados con la red geodésica indicada en la tabla anterior.

## 2.2. EVALUACIÓN Y CATASTRO DEL SISTEMA DE

#### ALCANTARILLADO EXISTENTE

# 2.2.1. INFORMACIÓN PRELIMINAR

El departamento de Agua Potable y Saneamiento entregó a mi persona para el desarrollo de su trabajo de investigación, los planos de las redes de alcantarillado de Paute en base a los diseños y evaluación del estudio de alcantarillado de 1994 por el Ing. Cesar Verdugo.

Los planos entregados se resumen a continuación:

 Planos de Evaluación y Diseño del Sistema de Alcantarillado de la Ciudad de Paute de 1994.

De otros organismos seccionales y de desarrollo se pudo recuperar la siguiente información:

- Cartografía de la Ciudad de Paute, de 1995.
- Cartografía digital de la ciudad de Paute de los años 1997 y 2004

#### 2.2.2. CATASTRO DE LOS SISTEMAS DE ALCANTARILLADO

En base a la información entregada por el Gobierno Autónomo descentralizado de Paute, y a recorridos de campo con los técnicos, se realizó los catastros de los pozos de revisión de alcantarillado, catastro de tuberías, formas geométricas de tuberías, se ubicó geográficamente cada uno de los pozos de revisión y se determinó las pendientes de las tuberías en base a un levantamiento topográfico y nivelación de los diferentes componentes del sistema.

La metodología empleada fue la siguiente:

La evaluación se realizó de toda la ciudad de Paute, ya que no se contaba con información detallada del levantamiento catastral realizado en 1994.

El Catastro se fue desarrollando desde las descargas al colector hacia atrás, es decir se identificaba la tubería que llegaba al colector y se seguía por donde vienen los efluentes hasta que se encontraban los tramos de cabeza.

La numeración de los pozos de los colectores principales, se realizó desde la descarga, aguas arriba, y los catastros de la redes que llegaban a este llevaban el número del pozo del colector a cual descargaban, luego si se producían bifurcaciones se consideraba en la numeración de los pozos anteriores (subsiguientes en el catastro) el número del pozo que se había dado la bifurcación.

Posterior al catastro se realizó la ubicación geográfica de los diferentes pozos, por medio de un levantamiento topográfico, referenciado a puntos específicos conocidos para luego de un procesamiento dar la ubicación exacta en coordenadas UTM de cada uno de los pozos de revisión o estructuras catastradas. Una vez concluida esta actividad, se procedió a la nivelación geométrica de las tapas de los diferentes

pozos de revisión y elementos catastrados, todos referenciados con cotas reales. Los niveles de precisión empleados tanto para ubicación como para nivelación fueron los normados por el Código Ecuatoriano para el Diseño de la Construcción de Obras Sanitarias (R.O. No. 6-1992-08-18).

Con los datos del catastro de los pozos y los datos de cotas y emplazamientos de estos elementos, y en base a los diámetros y materiales, longitudes y pendientes (determinados a partir de la topografía) de las tuberías se determinó la capacidad máxima de transporte y evacuación de los diferentes tramos de la red de alcantarillado.

A continuación resumiremos lo catastrado y levantado topográficamente en cada uno de los colectores:

#### 2.2.3. CATASTRO REALIZADO

Para evaluar las diferentes redes, es necesario conocer las características de las diferentes tuberías matrices, es decir, pendientes, diámetros, longitudes, y materiales. Por tanto, el trabajo empieza con el Catastro de Pozos, que consiste en determinar por medición directa, los diámetros, alturas y calidad de las tuberías, sentido del flujo de agua, así como también, las características del pozo.

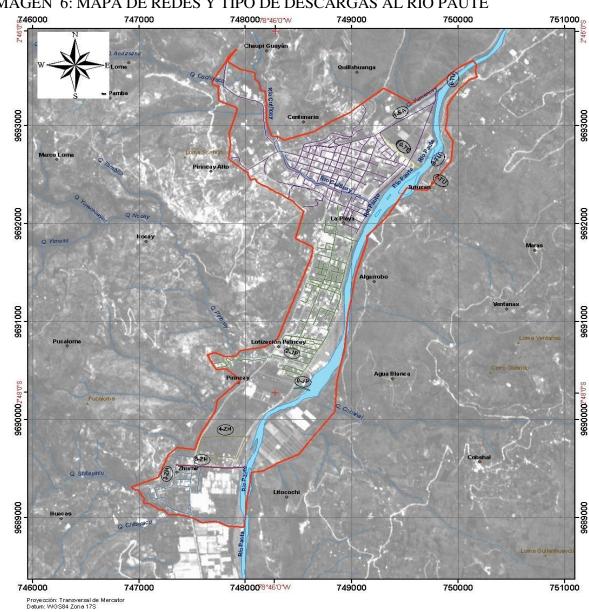



IMAGEN 6: MAPA DE REDES Y TIPO DE DESCARGAS AL RIO PAUTE

Elaboración y fuente: GAD DE PAUTE, PROPIA.

En el cuadro siguientes se hace un resumen de las redes, y el tipo de descarga en el río Paute.

Tabla 25: RESUMEN DE REDES Y TIPO DE DESCARGAS AL RIO PAUTE

| Red del Colector        | Tipo de Descarga                                                     |  |  |
|-------------------------|----------------------------------------------------------------------|--|--|
| S1- Salesianos          | Descarga del sistema combinado en la margen izquierda del río        |  |  |
|                         | Paute, que evacúa sus aguas en el sector de los Salesianos           |  |  |
|                         | cercana al desfogue de la quebrada de Yumancay.                      |  |  |
| 2JP – Jardines de Paute | Descarga sanitaria ubicada en el barrio de las Playas, que           |  |  |
|                         | descarga sus aguas en la margen izquierda del río Paute.             |  |  |
| 3ZH – Zhumir            | Descarga sanitaria, en la margen izquierda del río Paute.            |  |  |
| 4ZH – Zhumir            | Descarga sanitaria, en la margen izquierda del río Paute.            |  |  |
| 5ZH - Zhumir            | Descarga pluvial, en la margen izquierda del río Paute. Actualmente  |  |  |
|                         | también funciona como descarga sanitaria.                            |  |  |
| 6TU – Tutucán           | Descarga sanitaria, en la margen derecha del río Paute, solo         |  |  |
|                         | funciona como descarga del camal municipal.                          |  |  |
| 7TU – Tutucán           | Descarga sanitaria, en la margen derecha del río Paute.              |  |  |
| 8TU – Tutucán           | Descarga sanitaria, en la margen derecha del río Paute.              |  |  |
| 9JP – Jardines de Paute | Descarga sanitaria ubicada en el barrio de Pirincay, recoge las      |  |  |
|                         | aguas de la florícola Flores del Valle, que descarga sus aguas en la |  |  |
|                         | margen izquierda del río Paute.                                      |  |  |
| 10TE – Terminal         | Descarga Pluvial, en la margen izquierda del río Paute, sirve al     |  |  |
| Terrestre               | Terminal Terrestre ubicado en la ciudadela Don Bosco.                |  |  |

El catastro se ha realizado en todas las calles y barrios de la ciudad de Paute. Como se indicó en los párrafos anteriores, no se pudo rescatar la información levantada en el año 1994, por el Ing. Cesar Verdugo.

A continuación se describe la red que es de nuestro interés y donde se desarrollara el proyecto de la ampliación y mejoramiento del alcantarillado, dicho colector es el que se describe:

## 2.2.4. CONCLUSIONES DEL CATASTRO

La red del centro (Colector S1) y la red del sector la Playa (Colector JP2), son los que mayores problemas presentan, en caso de la primera muchos de las tuberías existentes ya han cumplido con su período de vida (1.865,24 m de colectores antiguos), mientras que en la segunda la descarga no se realizada de una forma adecuada, ocasionando que una longitud de la red trabaje inundada, siendo susceptible a

taponamientos. En las dos redes, en tramos que funcionan como red sanitaria se han conectado sumideros pluviales. En las otras redes se puede indicar que su estado general es aceptable.

Se recomienda realizar un mantenimiento programado en lo referente a pozos de revisión, limpieza de sumideros, de tramos de tuberías de bajas pendientes y de las descargas al río Paute.

En los sumideros, se destaca que aproximadamente el 20,51% se encuentran en mal estado u obstruidos. En tal virtud se recomienda que en aquellos que carecen de estructura de captación de agua se debe construir una caja de hormigón con su respectiva rejilla para evitar el taponamiento de las tuberías de hormigón que conectan a los pozos de revisión, así como un mayor mantenimiento de estos elementos en la ciudad.

En la redes que han sido diseñadas y construidas como redes de recolección de aguas sanitarias, en las cuales se han conectado sumideros para captar aguas lluvias se recomienda que estos sean desconectados, o taponados, hasta que se dé una solución definitiva a las zonas que carecen de alcantarillado combinado o pluvial.

## 2.2.5. DIAGNÓSTICO DEL SISTEMA DE ALCANTARILLADO

Una vez concluido el catastro de las diferentes redes y colectores se procedió a evaluar hidráulicamente el funcionamiento de la red, para lo que se tuvo que delimitar las áreas de aporte de cada una de las redes y por consiguiente de los colectores.

Las áreas de aporte se establecieron en base a la topografía, direcciones de descarga de las redes de alcantarillado, de los pozos catastrados, y a la configuración de

la zona. Se supuso que toda el área de aporte se concentraba en el pozo final a la delimitación.

Con los datos obtenidos en el catastro, la pendiente determinada por medio del levantamiento topográfico de las tapas de los pozos y por la nivelación de los mismos, y de acuerdo al tipo de material y a sus condiciones se evalúo la capacidad máxima de la tubería o canal.

#### ESTUDIO DE SUELOS

# 2.3. CARACTERÍSTICAS GEOLÓGICAS Y EVALUACIÓN GEOTÉCNICA EN LA ZONA DEL PROYECTO.

# 2.3.1.1. ALCANCE Y OBJETIVOS

Las conclusiones que se establecen en el presente informe, han sido determinadas basándose en trabajos de campo y laboratorio y éstos han tenido como finalidad el de obtener un adecuado conocimiento de la zona en estudio, desde los puntos de vista: geológico y de mecánica de los suelos, enfocándose a través de la primera disciplina: la litología, evaluación de sus condiciones estructurales y de estabilidad de los depósitos y formaciones existentes, con la finalidad de definir sus rasgos físicos, establecer si la zona o sectores de la misma constituyen áreas vulnerables y emitir de ser posible, las acciones de mitigación que sean pertinentes.

Desde el punto de vista de la mecánica de los suelos, han sido analizadas las características que presentan los suelos superficiales, muy particularmente enfocando aspectos relacionados con: presencia de nivel freático, permeabilidad, evaluaciones de la consistencia y compacidad de los estratos finos y granulares respectivamente, al considerar que estos parámetros son de fundamental importancia, ya que pueden

constituirse como factores desencadenantes de la inestabilidad y, necesarios para evaluar el costo relacionado con los rubros: excavaciones y rellenos.

## 2.3.1.2. <u>METODOLOGÍA DE LAS INVESTIGACIONES REALIZADAS</u>

El presente estudio fue realizado basándose en la siguiente metodología:

- Revisión y análisis de la información técnica y cartográfica existente:
   Informe final de PRECUPA, Hoja Geológica y de Amenaza por Terrenos Inestables de Paute.
  - 2. Reconocimiento de campo, de las zonas afectadas por el proyecto.
  - 3. Excavaciones superficiales de pozos a cielo abierto.

Siguiendo la metodología expuesta ha sido posible obtener datos que permiten caracterizar a la zona estudiada, desde los puntos de vista: morfológico, litológico y estructural, con la finalidad de:

- Obtener la información requerida, relacionada particularmente con las características geológicas de la zona afectada por el proyecto, con el fin de establecer la distribución de las diferentes formaciones y depósitos presentes en ésta.
- Definir sus litologías y determinar los tipos de suelos predominantes de las mismas.
- Evaluar su riesgo geológico, el cual puede generar daños económicos y sociales. Considerando que los factores que intervienen en la inestabilidad de las masas de suelos en la región están íntimamente relacionados con las propiedades intrínsecas de los materiales: estructuras geológicas, antiguos deslizamientos, presencia de aguas subterráneas y de factores externos como sismos y lluvias.

 Precisar cualitativamente algunas de las características geomecánicas básicas de los materiales de la superficie.

Aspectos considerados de importancia para la toma de decisiones técnicas en la planificación del proyecto.

# 2.3.1.3. <u>UBICACIÓN DEL PROYECTO</u>

Las zonas están comprendidas dentro del perímetro Urbano de la ciudad de Paute. Las ubicaciones de las diferentes excavaciones realizadas han sido georeferenciadas a través del sistema WGS 84.

## 2.3.1.4. <u>EXPLORACIÓN DEL SUBSUELO</u>

Las exploraciones del subsuelo se han realizado mediante las excavaciones de tres pozos de reconocimiento a cielo abierto, habiéndose alcanzado en estas profundidades variables, comprendidas entre 1,50 m., y 4,50 m., con relación a la superficie de terreno. Justificándose su número y profundidades: por consideraciones de orden geológico, por las características que presentan los estratos atravesados por las excavaciones y por la magnitud del proyecto.

Durante los procesos de excavación se realizó la inspección manual – visual, como la toma de muestra con la finalidad de obtener los perfiles estratigráficos, realizándose la clasificación de los suelos que constituyen los diferentes estratos mediante el Sistema Unificado de Clasificación de los Suelos (SUCS). La consistencia de los estratos de suelos finos existentes, ha sido cuantificada mediante ensayos in situ, con la ayuda de un especialoista en el area de mecánica de suelos, se utilizo para tal efecto el Penetrómetro y Torvane manuales. Los grados de compacidad de los estratos

granulares, han sido evaluados por estimaciones indirectas, basándose en su estructuración, estabilidad y resistencia presentada a la excavación.

# 2.3.1.5. <u>CONTEXTO GEOLÓGICO ZONAL</u>

En términos generales las zonas objeto del presente estudio, presentan una geomorfología con predominio de eventos: denudativos, acumulativos, gravitacional, y fluvial.

## a) Morfología

La zona del proyecto se presenta como un valle, que se extiende a partir de la margen izquierda del río Paute, transversal al mismo, constituyendo terrazas que forman planicies, en las cuales se asienta la ciudad, adyacente a su margen izquierdo, se localiza una terraza aluvial, de formación reciente, que se presentan como una llanura, elevada la misma a pocos metros con relación a los niveles del río.

## b) Litología

Del análisis practicado en campo y de su interpretación se han encontrado dentro de la zona analizada la existencia de: Depósitos Aluviales, Depósitos de Coluviales, Volcánicos de Gualaceo, Formación Llacao y Unidad Maguazo, cuyas características se describen a continuación.

#### Depósitos Aluviales

Constituyen depósitos recientes los cuales se ubican a la margen izquierdo del río Paute, en la terraza baja, formados los mismos por las variaciones de su cauce. Están compuestas por potentes capas conglomeráticas conformadas por bloques y boleos redondeados (40 - 60%) en matriz: gravas areno limosas, transportados y depositados por el río.

En general su comportamiento geotécnico corresponde al de un material granular, permeable, friccionante, de alta capacidad de carga. Ángulo de fricción en condiciones drenadas entre 30° y 40°. Excavaciones temporales verticales, necesitan entibado. Sobre ésta se asientan estratos de sedimentos finos depositados en llanuras de inundación, cuya potencia máxima es de alrededor de 2,00 m.

#### Nivel Freático

Hasta profundidades de 2,00 m. no hay presencia del espejo de agua, en las zonas en las cuales se requerirán excavaciones de zanjas para la ubicación de colectores. Es posible la presencia del espejo de agua a profundidades mayores a los 2,00 m.

#### o Estabilidad

Constituyen depósitos compactos y competentes, predominantemente friccionante y buenos terrenos de sedimentación, con excepción en taludes, los mismos que pueden estar sujetos a erosión y desprendimientos.

## O Clasificación de los suelos:

Los suelos matrices entre los boleos, se clasifican como gravas bien y mal graduadas areno limosas y gravas bien y mal graduadas areno arcillosas, con reducidos porcentajes de finos, de plasticidades bajas a nulas. La compacidad de los estratos es medianamente densa. Materiales de fácil excavación con máquina. Los sedimentos finos que se apoyan sobre éste depósito están constituidos predominantemente por suelos finos de consistencia medianamente compacta y de fácil excavación sea manual o a máquina.

## Depósitos Coluviales (QC)

Estos afloran en el sector Oeste, dentro del callejón que forma el río Cutilcay, en el sector bajo de Pirincay como también cubren la mayor parte del centro de la ciudad.

Su litología predominante lo constituyen sedimentos finos. Materiales que proceden de antiguos derrumbes, cuya densificación se lo ha logrado a través de procesos naturales en tiempos relativamente muy largos. Estos en ciertos sectores están cubiertos por rellenos con material de sitio cuya potencia máxima no excede de 1,60 m.

Su permeabilidad es de media a baja, factor que impide las filtraciones de aguas superficiales.

Actualmente se presentan como depósitos estables, su susceptibilidad a la inestabilidad dependerán muy particularmente de condiciones desencadenantes, siendo éstas: eliminación de la cubierta vegetal, lo cual ocasionará saturación del suelo, bajo condiciones de pluviosidad intensa, modificaciones substanciales de su morfología, por cortes de gran altura. Actualmente no revisten peligrosidad, desde el punto de vista de inestabilidad de masas de suelo.

## O Clasificación de los suelos:

En la zona del proyecto estos depósitos, se clasifican como suelos: arcillo arenosos y limo arcillo arenosos (CL, MH – CH), preconsolidados por efectos de desecación, variando la consistencia de los mismos de: medianamente compacta a compacta (qu  $\approx 15 \text{ TN/m}^2$  a qu  $\approx 20 \text{ TN/m}^2$ ). Son de fácil excavación, sea por procesos manuales o mediante maquinaria.

#### • Volcánicos de Gualaceo (V)

Afloran en el sector Norte de la ciudad, en las zonas en las cuales presentan una morfología abrupta, litológicamente es una secuencia sedimentaria tobácea

estratificada. La compacidad de estos materiales es alta a causa de fenómenos secundarios de desvitrificación de las cenizas que han cementado las tobas.

En las tobas de Gualaceo la probabilidad de la presencia de los fenómenos de inestabilidad son bajos. En éstas la escorrentía superficial genera importantes procesos de erosión laminar.

Materiales de mediana facilidad de excavación con maquinaria pesada, muy difícil la excavación manual.

#### Clasificación de los suelos:

En la zona del proyecto estos depósitos, se clasifican como suelos: gravas bien graduadas areno limosas (GW-GM), gravas mal graduadas areno limosas (GP-GM), gravas limo arcillo arenosas (GM-GC), arenas limo gravosas (SM), materiales de compacidad muy densa.

## • Formación Llacao (P<sub>LL</sub>)

Consiste en flujos piroclásticos, conglomerados y areniscas de origen volcánico de compacidad alta, no presenta problemas de inestabilidad de masas de suelos, a pesar de las fuertes pendientes, son sin embargo susceptibles a la fisuración y desprendimiento en bloques. Formación que aflora al Sur Oeste de la ciudad. En zonas de fuertes pendientes.

Materiales de fácil excavación manual, dentro de su horizonte meteorizado y de mediana facilidad a través de maquinaria pesada, dentro de su horizonte sano.

## O Clasificación de los suelos:

En su horizonte superficial meteorizado hay predominio de suelos finos tipo limos arenosos y gravas arcillosas.

## • <u>Unidad Maguazo</u>

Corresponde a la subdivisión superior de los metalvolcánicos de San Francisco, de la serie Paute, aflora en las laderas occidentales, sobre la cual descansan la Formación Llacao. Su litología predominante es mica esquistos con marcada foliación.

Su horizonte meteorizado, puede clasificarse como un material suelto, el mismo que es muy susceptible a los deslizamientos, cuya potencia no supera los 5,00 m. de profundidad. Los horizontes poco alterados a sanos son medianamente facturados, presentan juntas cerradas, en los cuales la orientación de sus discontinuidades, juega un papel importante en la estabilidad de sus taludes.

#### Clasificación de los suelos:

En su horizonte superficial meteorizado hay predominio de suelos granulares: gravas limo arenosas. Materiales de fácil excavación, mediante equipo mecánico.

# c) <u>Estabilidad</u>

Como ya se estableció anteriormente el horizonte meteorizado de la Unidad es muy susceptible a problemas de inestabilidad, contribuyendo a este fenómeno su relieve y la saturación. Los estratos poco meteorizados son compactos, por los procesos naturales de consolidación y densificación que han obrado sobre los mimos, en general son estables.

## 2.3.1.6. RIESGOS POR MOVIMIENTO DE MASAS DE TIERRA

En la zona de estudio (área urbana) no hay indicios de inestabilidad, producidos por factores geomorfológicos siendo éstos: topografía, estratificación; por factores

internos como: propiedades físicas – mecánicas de los suelo y estados de esfuerzos; como por factores climatológicos, efectos de aguas superficiales. Por lo expuesto en la actualidad se garantiza su estabilidad siempre que no existan acciones antrópicas o condiciones naturales extremas, que contribuyan a la inestabilidad de la zona en conjunto.

## 2.3.1.7. EXCAVACIONES

Al considerarse que las excavaciones de zanjas a realizarse son de carácter temporal y la mismas corresponden por su profundidad a "excavaciones poco profundas", no requiriendo por lo tanto cálculo alguno respecto al empuje horizontal a generarse, para el diseño de los elementos de sostenimiento. Pero deberá tenerse muy en cuenta el sistema de entibamiento para las paredes de las excavaciones, muy particularmente cuando las profundidades de excavaciones sobrepasen los 2,00 m.

Las excavaciones en general podrán realizarse mediante equipo mecánico, siendo recomendado el uso de retroexcavadoras. Con este procedimiento podrá avanzarse hasta 0,30 m., por arriba de la cota establecida para las cimentaciones de los colectores, este último espesor deberá ser escavado a mano, con la finalidad de no producir alteraciones en el terreno de fundaciones.

## 2.3.1.8. CLASIFICACIÓN DEL SUELO PARA EXCAVACIONES

Para fines de pagos se deberán considerar las siguientes clasificaciones:

- a) Excavación en suelo:
- a. Sobre el nivel freático
- b. Bajo nivel freático

Es la excavación de materiales que desde el punto de vista del sistema unificado de clasificación de suelos (SUCS), se clasifican como suelos finos tipo: CH, CL, MH, ML, OH, OL, o una combinación de los mismos, o suelos granulares de tipos: GW, GP, GC, GM, SW, SP, SC, SM, o que lleven doble nomenclatura. Son de fácil excavación mediante la utilización de equipo mecánico.

- b) Excavación marginal
- a. Sobre el nivel freático
- b. Bajo nivel freático

Comprenderá los correspondientes a materiales muy compactados, terrazas aluviales, en los cuales la presencia de boleos o fragmentos de roca de dimensiones superiores a 30 cm., superen el 30% del material del depósito en conjunto. Mediana dificultad de excavación, mediante la utilización de equipo mecánico.

- c) Excavación en sedimentos fuertemente consolidados
- a. Sobre el nivel freático
- b. Bajo nivel freático

Se enterará como aquellas excavaciones en materiales sedimentarios: Tobas y areniscas, pertenecientes a los volcánicos de Gualaceo y de la Formación Llacao, muy compactos, que si bien para su excavación no es necesario el empleo de explosivos, lo es el empleo de desgarradores (ripper), para su quebrantamiento y fácil extracción. Para su excavación es necesaria la utilización de excavadoras de gran potencia.

No se incluye dentro de este tipo el horizonte meteorizado de estos sedimentos, estratos cuya excavación será considerada, como excavación en suelo.

- d) Excavación en roca
- a. Sobre el nivel freático
- b. Bajo nivel freático

Comprenderá la correspondiente a todas las masas de roca, y la de todos aquellos materiales que presenten características de roca maciza, que únicamente puedan ser excavados utilizando explosivos.

Se incluyen dentro de este grupo los rodados o fragmentos de roca que presenten un volumen igual o superior a 0,30 m<sup>3</sup>.

El costo de las excavaciones por metro cúbico, variará conforme se avanza en profundidad en la siguiente escala:

Excavaciones de 0,00 m. a 2,00 m. con presencia y sin presencia de espejo de agua.

Excavaciones de 2,00 m. a 4,00 m. con presencia y sin presencia de espejo de agua.

Excavaciones de 4,00 m. a 6,00 m. con presencia y sin presencia de espejo de agua.

Excavaciones de una profundidad mayor a 6,00 m. con presencia y sin presencia de espejo de agua.

## 2.3.1.9. RELLENO DE EXCAVACIONES

Las excavaciones a realizarse en la terraza baja en la cual hay presencia de depósitos aluviales, podrá utilizarse para los rellenos los sedimentos superficiales y el suelo matriz entre cantos rodados del depósito aluvial, en este último, eliminando los fragmentos mayores a 3", ya que la presencia de boleos mayores al diámetro especificado, obstaculizan la compactación adecuada del material.

Deberán ser desechados como material para relleno, los suelos finos cohesivos saturados existentes en las excavaciones, los mismos que tendrán que ser sustituidos por un suelo granular.

En los rellenos se deberá exigir un grado de compactación igual o mayor al 90% del obtenido en una prueba de compactación en laboratorio, utilizando el método AASHTO T – 99, hasta una altura de 0,60 m. medidos a partir de la clave del colector, desde esta profundidad hasta el nivel de la subrasante de la vía, deberá obtenerse un grado de compactación igual o mayor al 95%, con relación a la prueba ya mencionada. Si para la construcción de los colectores es necesaria la destrucción de la infraestructura vial, la reposición de la misma desde la rasante natural, se realizará con materiales que cumplan las especificaciones de subase y base, según el caso.

El proceso de densificación se lo hará utilizando equipo mecánico, desechando el pisón manual, por ser relativamente poco eficiente para la obtención de las densidades especificadas.

El espesor de las capas compactadas, en ningún caso podrá ser mayor de 0,15 m.

Si hay deficiencia en los procesos de compactación, una vez concluidas las obras, deberá considerarse la repavimentación a realzarse como de tipo provisional durante un cierto período de tiempo y, será preciso efectuar reparaciones, cuando se presenten asentamientos.

El material a utilizarse como suelo de reposición de zanjas, deberá cumplir con los siguientes requerimientos:

## a) Requerimientos de graduación:

| Tamiz  | % que pasan |
|--------|-------------|
| 3"     | 100         |
| Nº 4   | 40 – 90     |
| Nº 200 | 0 – 20      |

## b) Requerimientos de plasticidad

Límite líquido < 45 Índice de plasticidad < 18

En ANEXOS con el nombre de "ESTUDIO DE SUELOS" mostramos los estudios de suelos que se realizaron en donde se muestra el análisis de los resultados del suelo de Paute en las respectivas pruebas de clasificación de suelos

## 2.4. ANÁLISIS DE RESULTADOS

Dentro del "ANÁLISIS DE RESULTADOS" encontraremos la evaluación que el GAD municipal del cantón Paute ha realizado, en esta información se detalla que

tuberías están funcionando adecuadamente dentro del análisis hidráulico que se realizo, y que nos sirvió de gran ayuda para poder diseñar el interceptor ya que en el encontramos los Caudales, población, tipos de tuberías y mas que llegan a la Av. Luis Enrique Vázquez (desde el sector de Zhumir hasta el sector de Yumancay) que son los que nosotros necesitamos para nuestro diseño, es bueno aclarar que sin esta información no se podría haber realizado dicho diseño. Esta información la podremos encontrar dentro de los anexos denominada "ALCANTARILLADO DE PAUTE".

#### **CAPITULO 3**

## PARÁMETROS DE DISEÑO

# 3. SELECCIÓN DE PARÁMETROS Y CRITERIOS DE DISEÑO

# 3.1. PERIODO DE DISEÑO

El Código Ecuatoriano para el Diseño de la Construcción de Obras Sanitarias (R.O. No. 6-1992-08-18), Numeral 5.1.1.6 recomienda como una aproximación del Período óptimo de Diseño para un sistema de alcantarillado la utilización de la siguiente expresión:

$$X = \frac{\left[2.6 \times (1-a)^{1.12}\right]}{R}$$

En dónde:

X: Período óptimo de diseño

a: factor de economía de escala igual 0,43 para colectores de alcantarillado

R: Tasa de actualización. El Banco del Estado recomienda una tasa del 6%

$$X = \frac{\left[2,6 \times (1-0,43)^{1,12}\right]}{0,06} = 23,08 \text{ años}$$

Por lo que se recomienda un período de 25 años para los "Sistema de Alcantarillado para el área urbana de la ciudad de Paute".

## 3.2. POBLACIÓN

La población asumida para el estudio de alcantarillado corresponde a la población calculada en el área del proyecto (área urbana o catastral), por medio del

"Método demográfico de componentes" con la utilización del programa computacional denominado SPECTRUM, asumiendo la Hipótesis recomendada en el estudio demográfico (Hipótesis media)<sup>1</sup>. Los valores finales son los siguientes:

Tabla 26: POBLACIÓN PROYECTADA

| Año  | Población |
|------|-----------|
| 2010 | 7.374     |
| 2011 | 7.791     |
| 2012 | 8.215     |
| 2013 | 8.642     |
| 2014 | 9.072     |
| 2015 | 9.504     |
| 2016 | 9.937     |
| 2017 | 10.369    |
| 2018 | 10.801    |
| 2019 | 11.231    |
| 2020 | 11.660    |
| 2021 | 12.086    |
| 2022 | 12.508    |
| 2023 | 12.926    |
| 2024 | 13.346    |
| 2025 | 13.766    |
| 2026 | 14.195    |
| 2027 | 14.632    |
| 2028 | 15.076    |
| 2029 | 15.527    |
| 2030 | 15.984    |
| 2031 | 16.443    |
| 2032 | 16.908    |
| 2033 | 17.374    |
| 2034 | 17.844    |
| 2035 | 18.313    |
| 2036 | 18.780    |
| 2037 | 19.242    |
| 2038 | 19.703    |
| 2039 | 20.161    |
| 2040 | 20.615    |

Fuente: Spectrum

Elaboración: Estudio Demográfico

-

<sup>1</sup> Revisar numeral 1.4.3.

# 3.3. ANÁLISIS POBLACIONAL

Con el propósito de definir la población, actual y futura (hasta el año 2041), se ha procedido a realizar un análisis demográfico por medio de procedimientos aceptados y exigidos por organismos internacionales como el Bando Interamericano de Desarrollo (BID) y nacionales como el Banco del Estado (BEDE). Este estudio de la población fue asesorado por el Gobierno Autónomo Descentralizado del cantón Paute, para el cual se me otorgo la ayuda debida con la documentación y programas para la ejecución del mismo así como de la debida ilustración del funcionamiento del programa SPECTRUM, para que al realizar este análisis poblacional los valores concuerden con los valores que ellos manejan en las proyecciones poblacionales que tienen del cantón, es decir nos de los resultados mas cercanos de la verdadera población. Gracias a este programa este estudio guarda relación directa con los datos estadísticos del Instituto Nacional de Estadísticas y Censos (INEC).

Es de manera sobresaliente también el destacar la utilización de este programa para el análisis de los resultados ya que realiza comparaciones que en los diferentes métodos de análisis poblacional no se realizan, dichos métodos y la utilización del programa se detallan a continuación:

La proyección se realizó a través de un paquete de computación demográfico denominado *SPECTRUM*, el cual contempla el método estándar de agrupación por componentes, "Cohortes", considerando cuatro factores demográficos básicos que inciden en el crecimiento de la población, y son:

- Nacimientos
- Defunciones
- Emigración
- Inmigración

La aplicación SPECTRUM realiza la proyección sobre la base de la relación entre los cuatro factores anotados, ponderando, además; el peso de la fecundidad y la población femenina en edad fértil, es decir, la relación entre los niños nacidos vivos en el período y la población en edad fértil (de 15 a 49 años), el cual incide directamente sobre la natalidad.

Las bases de datos, que han reforzado el estudio, fueron recolectadas, procesadas y depuradas, estadísticamente de varias fuentes oficiales, tales como: Instituto Nacional de Estadísticas y Censos (INEC), el cual proporcionó datos del Censo de Población y de Vivienda, Centro de Estudios de Población y Paternidad Responsable (CEPAR) y Consejo Nacional de Desarrollo (CONADE). A continuación se realiza un análisis de todos los indicadores utilizados en las proyecciones.

# 3.3.1. CRECIMIENTO POBLACIÓN EN EL CANTÓN PAUTE

Para el análisis se realizó un estudio de las variaciones de las tasas de crecimiento de la población registradas en los períodos ínter censal, tanto de hombres como de mujeres desde el año de 1990 hasta el año de 2010, para determinar la tendencia de crecimiento a futuro, como se puede observar a continuación:

Tabla 27: DEMOGRAFÍA: Población censal de Paute 1950 – 2010

| Años | Total  | Urbana | Rural  |
|------|--------|--------|--------|
| 1950 | 31.783 | 1.377  | 30.406 |
| 1962 | 29.271 | 1.511  | 27.760 |
| 1974 | 33.268 | 1.998  | 31.270 |
| 1982 | 36.178 | 2.338  | 33.840 |
| 1990 | 21.610 | 3.156  | 18.454 |
| 2001 | 23.106 | 5.014  | 18.092 |
| 2010 | 25.494 | 7.226  | 18.268 |

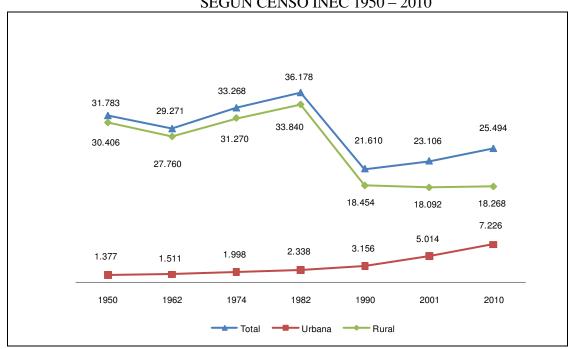

FUENTE: INEC (Instituto Nacional de Estadísticas y Censos) ELABORACIÓN: GAD DE PAUTE, PROPIA.

Tabla 28: CRECIMIENTO POBLACIONAL DE PAUTE URBANO

| Tasa de crecim | iento 1990 - 2001 | Total | Hombres | Mujeres |
|----------------|-------------------|-------|---------|---------|
| 1000 2010      | PAUTE             | 3,43% | 3,25%   | 3,60%   |
| 1990 - 2010    | Área Urbana       | 4,23% | 4,29%   | 4,18%   |

FUENTE: INEC (Instituto Nacional de Estadísticas y Censos) ELABORACIÓN: GAD DE PAUTE

IMAGEN 7: DEMOGRAFÍA: Población de Paute, SEGÚN CENSO INEC 1950 – 2010



FUENTE: INEC (Instituto Nacional de Estadísticas y Censos) ELABORACIÓN: GAD DE PAUTE, PROPIA. En el lapso de alrededor de un cuarto de siglo (1950 - 1974) en la provincia del Azuay, como en el resto del país se ha podido observar la prevalencia de altos niveles de fecundidad, lo que ha ocasionado tener tasas brutas de natalidad de entre 43 y 46 nacimientos por mil habitantes; en el siguiente cuarto de siglo la tendencia marca el descenso, hasta ubicarse en el nivel de 22 nacimientos por mil habitantes para el año 2001. Para el año 2010 en nivel de fecundidad llego a un valor de 21 nacimientos por cada 1.000 habitantes.

La fecundidad en la provincia del Azuay, para los periodos comprendidos entre 1982 – 2001 el número promedio de hijos por mujer ha disminuido de 3,3 a 2,76, tendencia similar se presenta en el área urbana (2,5 a 2,2) y en el área rural de 3,8 a 3,2, lo que representa una disminución de 18,2 por ciento a nivel provincial y de 12 y 15,8 por ciento para las áreas urbana y rural, respectivamente2. Para el periodo 2001 – 2010 el número promedio de hijos por mujer llego a un valor de 2,6. Por lo demás, el nivel de instrucción en las madres influye en la fecundidad, *cuando más alto es el nivel de instrucción de las madres más baja es su fecundidad*.

Sobre la base de esta información, se procedió a construir una curva que refleje la tendencia de la población en los períodos ínter censal, obteniendo los siguientes resultados:

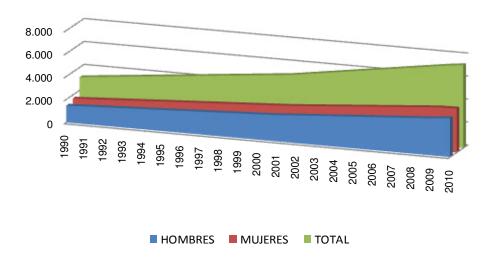

<sup>2</sup> Véase: Análisis de los Resultados Definitivos del VI Censo de Población y V de Vivienda —2001-, INEC; pág. 16, 17. Resultados del VII Censo de Población y VI de Vivienda —2010-, INEC.

Tabla 29: PROYECCIONES DEMOGRÁFICAS: Población (período 1990 – 2010)

| Numero | Año   | Población Total |
|--------|-------|-----------------|
| 0      | 1.990 | 3.156           |
| 1      | 1.991 | 3.325           |
| 2      | 1.992 | 3.494           |
| 3      | 1.993 | 3.663           |
| 4      | 1.994 | 3.832           |
| 5      | 1.995 | 4.001           |
| 6      | 1.996 | 4.169           |
| 7      | 1.997 | 4.338           |
| 8      | 1.998 | 4.507           |
| 9      | 1.999 | 4.676           |
| 10     | 2.000 | 4.845           |
| 11     | 2.001 | 5.014           |
| 12     | 2.002 | 5.265           |
| 13     | 2.003 | 5.516           |
| 14     | 2.004 | 5.767           |
| 15     | 2.005 | 6.018           |
| 16     | 2.006 | 6.268           |
| 17     | 2.007 | 6.519           |
| 18     | 2.008 | 6.770           |
| 19     | 2.009 | 7.021           |
| 20     | 2.010 | 7.226           |

Fuente: INEC (instituto nacional de estadísticas y censos) Elaboración: GAD DE PAUTE, PROPIA.

IMAGEN 8: DEMOGRAFÍA: Población de Paute, según censo 1990 – 2010



Fuente: INEC (Instituto Nacional de Estadísticas y Censos) Elaboración: PROPIA

# 3.3.1.1. <u>Estructura de la Población por Edad y Sexo</u>

Para el análisis se estableció la distribución porcentual de las parroquias en grupos de edad, del VII Censo de Población y VI de Vivienda del año 2010, y se aplicó a la población del año de 2010 - 2041 de la proyección

Tabla 30: DEMOGRAFÍA: Estructura de la población Año 2010

| Edades   | Total   | Hombres | Mujeres |
|----------|---------|---------|---------|
| 0 - 4    | 12,21%  | 13,53%  | 11,09%  |
| 5 - 9    | 11,39%  | 12,70%  | 10,28%  |
| 10 - 14  | 10,97%  | 12,18%  | 9,95%   |
| 15 - 19  | 10,79%  | 10,56%  | 10,98%  |
| 20 – 24  | 10,39%  | 10,48%  | 10,32%  |
| 25 - 29  | 8,18%   | 7,94%   | 8,37%   |
| 30 - 34  | 6,56%   | 6,59%   | 6,54%   |
| 35 - 39  | 5,92%   | 5,54%   | 6,24%   |
| 40 - 44  | 4,53%   | 3,80%   | 5,14%   |
| 45 - 49  | 4,05%   | 3,67%   | 4,37%   |
| 50 - 54  | 3,11%   | 3,27%   | 2,97%   |
| 55 - 59  | 2,81%   | 2,71%   | 2,90%   |
| 60 - 64  | 2,25%   | 1,96%   | 2,50%   |
| 65 - 69  | 1,74%   | 1,31%   | 2,09%   |
| 70 - 74  | 1,64%   | 1,18%   | 2,02%   |
| 75 – 79  | 1,38%   | 1,09%   | 1,62%   |
| 80 y más | 2,09%   | 1,48%   | 2,61%   |
| TOTAL    | 100,00% | 45,69%  | 54,31%  |

Fuente: INEC (Instituto Nacional de Estadísticas y Censos) Elaboración: GAD DE PAUTE.

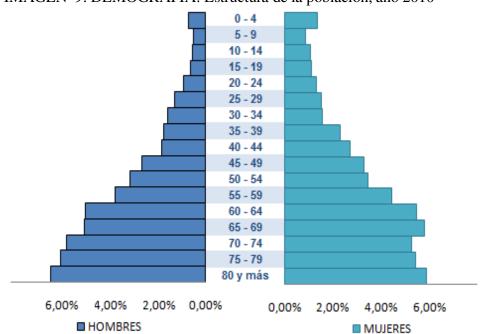



IMAGEN 9: DEMOGRAFÍA: Estructura de la población, año 2010

Fuente: INEC (Instituto Nacional de Estadísticas y Censos) Elaboración: GAD DE PAUTE, PROPIA

La distribución de las poblaciones en estudio, por grupos de edades, es eminentemente joven, así, para el año del 2010 el 34,66 % de la población es menor de 15 años y el 55,8% es menor de 25 años. Para el presente estudio se utiliza la estructura porcentual de la población correspondiente.

El índice de masculinidad se ha calculado de acuerdo a la información obtenida del INEC, y es el indicador obtenido a través de la relación población masculina y población femenina.

Paute -urbano-

IM = (Población Masculina / Población Femenina) \*100 IM = (3.396 / 3.830) \*100 IM = 89 El índice indica que existen 89 hombres por cada 100 mujeres, en la Paute - urbano-, las consecuencias de la migración se reflejan en gran medida, puesto que existe una correspondencia numérica, entre hombre y mujeres.

Las expectativas de vida adoptadas, corresponden a las tendencias nacionales, similares a las observadas en Latino América cuya tabla se utiliza para las corridas del programa "SPECTRUM". En el cuadro siguiente se presenta la esperanza de vida adoptada en el estudio.

Tabla 31: DEMOGRAFÍA: Esperanza de vida al nacer

| Años | Hombres | Mujeres |
|------|---------|---------|
| 2010 | 61,6    | 65,5    |
| 2020 | 66,9    | 71,8    |
| 2030 | 70,8    | 76,6    |
| 2040 | 72,8    | 78,7    |

Fuente: Spectrum, Caso Ecuador Elaboración: GAD DE PAUTE.

# 3.3.1.2. <u>Migración</u>

De acuerdo a una investigación realizada por el Centro de Investigaciones Geográficas (CEDIG) y publicadas en el documento "Transición Demográfica en el Ecuador", manifiesta que las causas de migración responden a factores coyunturales propios de países en desarrollo, y son:

- La baja excepción de la mortalidad,
- Situaciones económicas difíciles como el desempleo,
- Catástrofes naturales (inundaciones, terremotos), y

Para la provincia del Azuay el proceso de migración es muy marcado,
 además la emigración del sector rural muestra altas tasas de fecundidad, hecho que
 incide en la población actual y futura.

El saldo migratorio de Paute -urbano-, de acuerdo a la información obtenida en el último censo, *es positivo y cada año tiende a aumentar*; esta situación se repite en toda la década del 90 y del 2000, el saldo migratorio se ha obtenido de la siguiente manera:

Población 2010 + nacidos vivos (1990 a 2009) – defunciones (1990 a 2009) – población 1990 = 7.226 + (2.332 – 1.393) – 3.156

= 5.009 saldo de migración (239 promedio anual)

Esta migración neta positiva significa que el crecimiento demográfico actual, de Paute -urbano-, además del crecimiento natural o vegetativo tiene gran importancia la migración campo - ciudad, ciudad - país extranjero.

Tabla 32: DEMOGRAFÍA: Estructura de la migración

| Edades  | Hombres | Mujeres |
|---------|---------|---------|
| 0 - 4   | 0,95    | 1,53    |
| 5 - 9   | 1,06    | 1,85    |
| 10 - 14 | 1,62    | 2,43    |
| 15 - 19 | 13,45   | 13,69   |
| 20 - 24 | 23,69   | 23,98   |
| 25 - 29 | 20,72   | 21,00   |
| 30 - 34 | 14,26   | 13,03   |
| 35 - 39 | 9,78    | 8,35    |
| 40 - 44 | 5,50    | 4,74    |
| 45 - 49 | 3,03    | 2,47    |
| 50 - 54 | 1,85    | 2,05    |
| 55 - 59 | 0,80    | 0,92    |
| 60 - 64 | 0,47    | 0,60    |
| 65 - 69 | 0,22    | 0,42    |
| 70 - 74 | 0,19    | 0,40    |
| 75 - 79 | 0,10    | 0,12    |

80 y más 2,30 2,43

Fuente: INEC (Instituto Nacional de Estadísticas y Censos) Elaboración: GAD DE PAUTE.

A partir de las Estadísticas Vitales (nacimientos y defunciones) se estableció el número de nacimientos y muertes en el período 1990 – 2010, así como sus respectivas tasas de crecimiento, el siguiente cuadro muestra la evolución de las tasas anuales, vegetativa y migratoria:

Tabla 33: DEMOGRAFÍA: Tasas Anuales, Vegetativas y Migratorias

|         | Tasas de crecimiento |       |      |           |           |            |            |       |           |
|---------|----------------------|-------|------|-----------|-----------|------------|------------|-------|-----------|
| Núm.    | Años                 |       | Valo | res       | Tasas     |            |            |       |           |
| ivuiii. | Allos                | Nacim | Def. | Población | Natalidad | Mortalidad | Vegetativa | Anual | Migración |
| 1       | 1990                 | 66    | 37   | 3.156     |           |            |            |       |           |
| 2       | 1991                 | 59    | 39   | 3.325     | -10,61    | 5,41       | -16,01     | 5,35  | 21,36     |
| 3       | 1992                 | 48    | 35   | 3.494     | -18,64    | -10,26     | -8,39      | 5,08  | 13,47     |
| 4       | 1993                 | 36    | 29   | 3.663     | -25,00    | -17,14     | -7,86      | 4,83  | 12,69     |
| 5       | 1994                 | 29    | 31   | 3.832     | -19,44    | 6,90       | -26,34     | 4,61  | 30,95     |
| 6       | 1995                 | 29    | 29   | 4.001     | 0,00      | -6,45      | 6,45       | 4,41  | -2,04     |
| 7       | 1996                 | 48    | 31   | 4.169     | 65,52     | 6,90       | 58,62      | 4,22  | -54,40    |
| 8       | 1997                 | 60    | 32   | 4.338     | 25,00     | 3,23       | 21,77      | 4,05  | -17,72    |
| 9       | 1998                 | 131   | 36   | 4.507     | 118,33    | 12,50      | 105,83     | 3,89  | -101,94   |
| 10      | 1999                 | 154   | 35   | 4.676     | 17,56     | -2,78      | 20,34      | 3,75  | -16,59    |
| 11      | 2000                 | 116   | 58   | 4.845     | -24,68    | 65,71      | -90,39     | 3,61  | 94,00     |
| 12      | 2001                 | 132   | 28   | 5.014     | 13,79     | -51,72     | 65,52      | 3,49  | -62,03    |
| 13      | 2002                 | 157   | 67   | 5.265     | 18,94     | 139,29     | -120,35    | 5,00  | 125,35    |
| 14      | 2003                 | 114   | 41   | 5.516     | -27,39    | 0,00       | -27,39     | 4,77  | 32,15     |
| 15      | 2004                 | 176   | 41   | 5.767     | 54,39     | 0,00       | 54,39      | 4,55  | -49,84    |
| 16      | 2005                 | 160   | 43   | 6.018     | -9,09     | 4,88       | -13,97     | 4,35  | 18,32     |
| 17      | 2006                 | 191   | 39   | 6.268     | 19,38     | -9,30      | 28,68      | 4,17  | -24,51    |
| 18      | 2007                 | 178   | 53   | 6.519     | -6,81     | 35,90      | -42,70     | 4,00  | 46,71     |
| 19      | 2008                 | 162   | 71   | 6.770     | -8,99     | 33,96      | -42,95     | 3,85  | 46,80     |
| 20      | 2009                 | 150   | 69   | 7.021     | -7,41     | -2,82      | -4,59      | 3,71  | 8,30      |
| 21      | 2010                 | 136   | 70   | 7.226     | -9,33     | 1,45       | -10,78     | 2,92  | 13,70     |

Fuente: - INEC (Instituto Nacional de Estadísticas y Censos)

Elaboración: GAD DE PAUTE.

En base de la diferencia entre las tasas de crecimiento vegetativo y global, para el período 1990 – 2010, para el cual existe información censal, se estableció la tasa

migratoria de las localidades, convirtiendo en valores absolutos o saldos migratorios netos, para la proyección demográfica.

#### *3.3.1.3. Fecundidad*

Este indicador constituye uno de los componentes demográficos básicos que incide en el crecimiento de la población. Para su determinación se considera a la población femenina entre 15 y 49 años, la misma que en el año de 2010 representó el 50,72% del total de la población femenina, respectivamente.

Tabla 34: DEMOGRAFÍA: Distribución porcentual de la fecundidad

| Grupos de edad | Paute |
|----------------|-------|
| 15 a 19        | 21,13 |
| 20 a 24        | 19,86 |
| 25 a 29        | 16,11 |
| 30 a 34        | 12,58 |
| 35 a 39        | 12,01 |
| 40 a 44        | 9,89  |
| 45 a 49        | 8,41  |

Fuente: Ajuste Demográfico Elaboración: GAD DE PAUTE.

Con respecto a este indicador es necesario señalar que existen dos fuentes con resultados significativamente diferentes, debido a las diversas metodologías utilizadas y a la revisión de los datos que dio lugar a una corrección de los resultados:

- El Instituto Nacional de Estadísticas y Censos INEC, y
- El Centro de Población de Paternidad Responsable CEPAR.

La diferencia, de las dos fuentes, se detalla a continuación:

## *3.3.1.4. INEC*

De acuerdo al INEC, en el periodo 2001 – 2010 el número promedio de hijos por mujer ha disminuido en un 5,8%, al variar de 2,76 a 2,6.

#### 3.3.1.5. Centro de Estudios de Población y Desarrollo Social (CEPAR)

Según el CEPAR, la tasa global de fecundidad a nivel provincial, para el 2010 e llega a 2,6. La tasa específica de fecundidad por edad es más baja en las mujeres jóvenes, aumentan notablemente entre los 20 y 24 años y disminuye a medida que avanza la edad, siendo más rápido su descenso a partir de los 30 años de edad.

Para nuestro análisis, se utilizó la tasa global de fecundidad por quinquenios, tomando como punto de partida la tasa definida por el **SPECTRUM**, la proyección se realizó en base a los ritmos de crecimiento estimados por el programa para el país.

En cuanto a la distribución porcentual de la fecundidad por grupos de edades y la tasa global de fecundidad, se asumió lo calculado por el **SPECTRUM**, caso Ecuador.

Tabla 35: DEMOGRAFÍA: Tasa global de Fecundidad

|   | Años | Valor |
|---|------|-------|
| Ī | 2010 | 4,91  |
| Ī | 2020 | 3,58  |
| Ī | 2030 | 2,90  |
| Ī | 2040 | 2,40  |
|   | 2030 | 2,90  |

Fuente: Spectrum

Elaboración: GAD DE PAUTE.

#### 3.3.1.6. Mortalidad Infantil

Analizando las tasas de natalidad y mortalidad, obtenidas de los anuarios de estadísticas vitales publicadas por el INEC, se han determinado los siguientes resultados:

Pese al descenso registrado, la mortalidad infantil aún es alta, para el 2010 es de 26 defunciones por 1.000 nacimientos.

#### 3.3.2. CRECIMIENTO POBLACIONAL

#### 3.3.2.1. *Mediante el empleo del programa spectrum*

En el paquete demográfico **SPECTRUM**, el factor decisivo para establecer diferentes hipótesis de crecimiento de la población constituye el factor migratorio, debido a las características propias de la población. Para Paute -urbano- se han establecido tres hipótesis (alta, media y baja), cada una con su respectivo soporte de análisis socioeconómico. Los resultados de las corridas del SPECTRUM (en resumen) se presentan en el cuadro siguiente, los cuales, nos permiten corroborar el ajuste entre el supuesto teórico adoptado para cada hipótesis migratoria y su expresión estadística.

Tabla 36: DEMOGRAFÍA: Hipótesis de crecimiento migratorio

| Numero | Λños  | Hipótesis |       |      |  |
|--------|-------|-----------|-------|------|--|
| Numero | Ailus | Baja      | Media | Alta |  |
| 0      | 2011  | 171       | 168   | 164  |  |
| 5      | 2016  | 178       | 157   | 137  |  |
| 10     | 2021  | 184       | 147   | 110  |  |
| 15     | 2026  | 191       | 137   | 82   |  |
| 20     | 2031  | 199       | 127   | 55   |  |
| 25     | 2036  | 206       | 117   | 27   |  |
| 30     | 2041  | 214       | 107   | 0    |  |

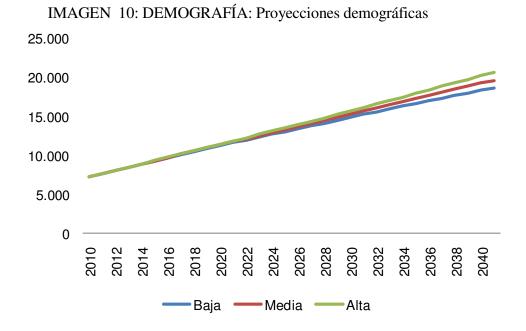
FUENTE: AJUSTE DEMOGRÁFICO ELABORACIÓN: GAD DE PAUTE, PROPIA

#### 3.3.2.2. HIPÓTESIS ALTA

La hipótesis alta se ha desarrollado a partir de una tendencia construida por la tasa de crecimiento positiva del saldo migratorio neto de la Paute -urbano-, tanto para hombres como mujeres, este modelo se asume como hipótesis alta, pues mantiene la tendencia migratoria de la serie histórica de datos.

## 3.3.2.3. HIPÓTESIS BAJA

Para esta hipótesis se ha utilizado una tasa de crecimiento migratorio negativa obtenida de la serie histórica 1990 - 2010, registrado en la Paute -urbano-, además de una disminución del crecimiento vegetativo de la población.


## 3.3.2.4. <u>HIPÓTESIS MEDIA</u>

Es un promedio de los valores anteriores, esta hipótesis se ha construido a partir del promedio de las hipótesis alta y baja. La hipótesis recomendada para el estudio, *es la hipótesis media*, tanto para hombres como para mujeres, para el período 2010 – 2041. En la siguiente tabla se presentan los resultados obtenidos.

Tabla 37: DEMOGRAFÍA: Proyecciones Demográficas,
PAUTE -URBANO-

|      | Hipótesis |        |        |  |  |  |
|------|-----------|--------|--------|--|--|--|
| Año  | Alta      | Media  | Baja   |  |  |  |
|      | Total     | Total  | Total  |  |  |  |
| 2010 | 7.226     | 7.226  | 7.226  |  |  |  |
| 2011 | 7.635     | 7.635  | 7.634  |  |  |  |
| 2012 | 8.051     | 8.048  | 8.044  |  |  |  |
| 2013 | 8.469     | 8.462  | 8.454  |  |  |  |
| 2014 | 8.890     | 8.876  | 8.862  |  |  |  |
| 2015 | 9.313     | 9.292  | 9.270  |  |  |  |
| 2016 | 9.737     | 9.705  | 9.672  |  |  |  |
| 2017 | 10.160    | 10.116 | 10.071 |  |  |  |
| 2018 | 10.583    | 10.525 | 10.466 |  |  |  |
| 2019 | 11.004    | 10.930 | 10.855 |  |  |  |
| 2020 | 11.424    | 11.331 | 11.237 |  |  |  |
| 2021 | 11.841    | 11.727 | 11.612 |  |  |  |
| 2022 | 12.254    | 12.117 | 11.979 |  |  |  |
| 2023 | 12.664    | 12.502 | 12.340 |  |  |  |
| 2024 | 13.075    | 12.886 | 12.697 |  |  |  |
| 2025 | 13.486    | 13.267 | 13.047 |  |  |  |
| 2026 | 13.906    | 13.655 | 13.404 |  |  |  |
| 2027 | 14.334    | 14.049 | 13.763 |  |  |  |
| 2028 | 14.769    | 14.447 | 14.124 |  |  |  |
| 2029 | 15.211    | 14.850 | 14.489 |  |  |  |
| 2030 | 15.659    | 15.257 | 14.854 |  |  |  |
| 2031 | 16.109    | 15.663 | 15.217 |  |  |  |
| 2032 | 16.565    | 16.073 | 15.580 |  |  |  |
| 2033 | 17.022    | 16.481 | 15.939 |  |  |  |
| 2034 | 17.482    | 16.889 | 16.296 |  |  |  |
| 2035 | 17.941    | 17.295 | 16.648 |  |  |  |
| 2036 | 18.399    | 17.696 | 16.992 |  |  |  |
| 2037 | 18.852    | 18.091 | 17.329 |  |  |  |
| 2038 | 19.304    | 18.481 | 17.658 |  |  |  |
| 2039 | 19.753    | 18.866 | 17.979 |  |  |  |
| 2040 | 20.198    | 19.245 | 18.292 |  |  |  |
| 2041 | 20.638    | 19.616 | 18.594 |  |  |  |

Fuente: Spectrum
Elaboración: GAD DE PAUTE, PROPIA



Fuente: Spectrum Elaboración: GAD DE PAUTE.

La población inicial del proyecto es mayor que la registrada en el Censo de noviembre de 2001, debido a que el área urbana censal, es menor que el área urbana aprobada por la I. Municipalidad de Paute en el año 2010. La diferencia de población de 148 habitantes corresponde a la estimación del área periférica a la censal, y que es parte del área urbana de la ciudad de Paute. En la siguiente ilustración se sobreponen dichas áreas

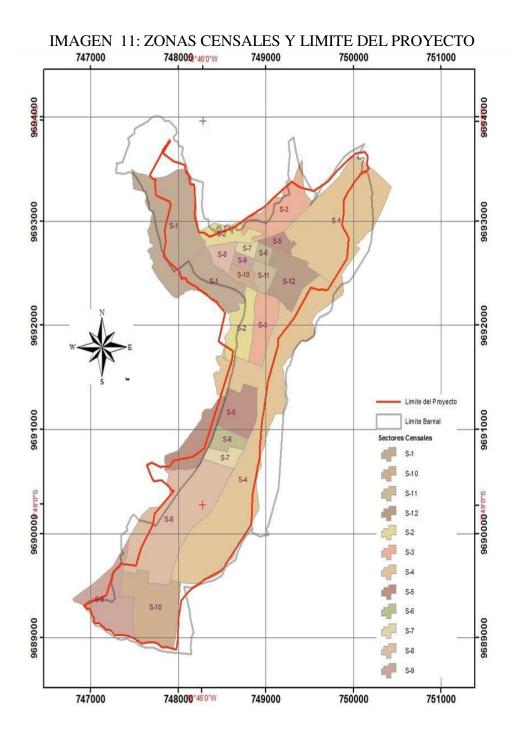



Tabla 38: PAUTE: Proyecciones Demográficas -ÁREA URBANA-

|      | POBLACION | DEL PROYECTO |           |  |  |
|------|-----------|--------------|-----------|--|--|
| Años | Total     | Población    | Expansión |  |  |
|      | Total     | Estimada     | Urbana    |  |  |
| 2010 | 7.374     | 7.226        | 148       |  |  |
| 2011 | 7.791     | 7.635        | 156       |  |  |
| 2012 | 8.215     | 8.048        | 164       |  |  |
| 2013 | 8.642     | 8.462        | 173       |  |  |
| 2014 | 9.072     | 8.876        | 182       |  |  |
| 2015 | 9.504     | 9.292        | 191       |  |  |
| 2016 | 9.937     | 9.705        | 200       |  |  |
| 2017 | 10.369    | 10.116       | 209       |  |  |
| 2018 | 10.801    | 10.525       | 218       |  |  |
| 2019 | 11.231    | 10.930       | 227       |  |  |
| 2020 | 11.660    | 11.331       | 236       |  |  |
| 2021 | 12.086    | 11.727       | 245       |  |  |
| 2022 | 12.508    | 12.117       | 254       |  |  |
| 2023 | 12.926    | 12.502       | 262       |  |  |
| 2024 | 13.346    | 12.886       | 271       |  |  |
| 2025 | 13.766    | 13.267       | 280       |  |  |
| 2026 | 14.195    | 13.655       | 289       |  |  |
| 2027 | 14.632    | 14.049       | 298       |  |  |
| 2028 | 15.076    | 14.447       | 307       |  |  |
| 2029 | 15.527    | 14.850       | 316       |  |  |
| 2030 | 15.984    | 15.257       | 325       |  |  |
| 2031 | 16.443    | 15.663       | 334       |  |  |
| 2032 | 16.908    | 16.073       | 343       |  |  |
| 2033 | 17.374    | 16.481       | 352       |  |  |
| 2034 | 17.844    | 16.889       | 362       |  |  |
| 2035 | 18.313    | 17.295       | 372       |  |  |
| 2036 | 18.780    | 17.696       | 381       |  |  |
| 2037 | 19.242    | 18.091       | 390       |  |  |
| 2038 | 19.703    | 18.481       | 399       |  |  |
| 2039 | 20.161    | 18.866       | 408       |  |  |
| 2040 | 20.615    | 19.245       | 417       |  |  |
| 2041 | 21.064    | 19.616       | 426       |  |  |

Fuente: Spectrum
Elaboración: Estudio Demográfico

## 3.3.2.5. Otros métodos de proyección poblacional

Para las proyecciones Aritmética y Geométrica se propone utilizar un crecimiento igual al registrado en el período censal 2001 y 2010 para el área urbana de Paute y que es igual al 4,9% y 4,14% respectivamente.

El método de proyección poblacional con ajuste a las tasas de crecimiento de tipo lineal y exponencial se realiza de acuerdo a los datos registrados en los últimos dos censos (2001, 2010) y a los ajustes de las tasas de crecimiento intercensales por medio de regresiones lineales como exponenciales, a partir de las cuales se obtiene ecuaciones que nos sirven para determinar las poblaciones para los diferentes años del proyecto.

En la tabla adjunta se presentan proyecciones poblacionales utilizando el método demográfico SPECTRUM, los métodos Aritmético y Geométrico, y con ajuste de crecimiento lineal y exponencial, con las siguientes consideraciones:

Tabla 39: CRECIMIENTO POBLACIONAL EN EL AREA URBANA DE PAUTE CONSIDERANDO LIMITE URBANO

| Número  | Año  | Método de proyección poblacional |            |            |            |             |
|---------|------|----------------------------------|------------|------------|------------|-------------|
| de años |      | Demográfico                      | Aritmético | Geométrico | Reg.Expon. | Reg. Lineal |
| 0       | 2010 | 7.374                            | 7.374      | 7.374      | 7.374      | 7.374       |
| 1       | 2011 | 7.791                            | 7.735      | 7.679      | 7.678      | 7.735       |
| 2       | 2012 | 8.215                            | 8.097      | 7.997      | 7.994      | 8.111       |
| 3       | 2013 | 8.642                            | 8.458      | 8.328      | 8.321      | 8.501       |
| 4       | 2014 | 9.072                            | 8.819      | 8.673      | 8.660      | 8.905       |
| 5       | 2015 | 9.504                            | 9.181      | 9.032      | 9.012      | 9.323       |
| 6       | 2016 | 9.937                            | 9.542      | 9.406      | 9.377      | 9.757       |
| 7       | 2017 | 10.369                           | 9.903      | 9.795      | 9.755      | 10.206      |
| 8       | 2018 | 10.801                           | 10.265     | 10.201     | 10.146     | 10.670      |
| 9       | 2019 | 11.231                           | 10.626     | 10.623     | 10.551     | 11.151      |
| 10      | 2020 | 11.660                           | 10.987     | 11.063     | 10.971     | 11.647      |
| 11      | 2021 | 12.086                           | 11.349     | 11.521     | 11.406     | 12.159      |
| 12      | 2022 | 12.508                           | 11.710     | 11.998     | 11.856     | 12.688      |
| 13      | 2023 | 12.926                           | 12.071     | 12.495     | 12.322     | 13.234      |
| 14      | 2024 | 13.346                           | 12.433     | 13.012     | 12.804     | 13.796      |
| 15      | 2025 | 13.766                           | 12.794     | 13.551     | 13.303     | 14.376      |
| 16      | 2026 | 14.195                           | 13.155     | 14.112     | 13.820     | 14.973      |
| 17      | 2027 | 14.632                           | 13.517     | 14.696     | 14.355     | 15.587      |
| 18      | 2028 | 15.076                           | 13.878     | 15.305     | 14.908     | 16.219      |
| 19      | 2029 | 15.527                           | 14.239     | 15.938     | 15.480     | 16.868      |
| 20      | 2030 | 15.984                           | 14.601     | 16.598     | 16.072     | 17.534      |
| 21      | 2031 | 16.443                           | 14.962     | 17.285     | 16.684     | 18.218      |
| 22      | 2032 | 16.908                           | 15.323     | 18.001     | 17.316     | 18.919      |
| 23      | 2033 | 17.374                           | 15.684     | 18.746     | 17.970     | 19.637      |
| 24      | 2034 | 17.844                           | 16.046     | 19.522     | 18.646     | 20.374      |
| 25      | 2035 | 18.313                           | 16.407     | 20.330     | 19.344     | 21.128      |
| 26      | 2036 | 18.780                           | 16.768     | 21.172     | 20.066     | 21.899      |
| 27      | 2037 | 19.242                           | 17.130     | 22.048     | 20.811     | 22.688      |
| 28      | 2038 | 19.703                           | 17.491     | 22.961     | 21.581     | 23.493      |
| 29      | 2039 | 20.161                           | 17.852     | 23.912     | 22.376     | 24.315      |
| 30      | 2040 | 20.615                           | 18.214     | 24.902     | 23.197     | 25.154      |
| 31      | 2041 | 21.064                           | 18.575     | 25.933     | 24.045     | 26.009      |

Fuente: Spectrum

Elaboración: Estudio Demográfico

De los resultados obtenidos se observa que la proyección utilizando un método de crecimiento demográfico alcanza una mayor población que el método aritmético, y al

ser un procedimiento en el cual intervienen varias variables, se propone utilizar estos valores para un horizonte final de vida útil.

## 3.3.3. ZONIFICACIÓN Y DENSIDADES DE LA ZONA URBANA DE LA CIUDAD DE PAUTE

Actualmente la ciudad de Paute no cuenta con zonificación urbana en cuanto al uso de suelo. Para la determinación de zonificación de la ciudad de Paute, se revisó los levantamientos catastrales, así como la información obtenida del último censo de población y vivienda (noviembre de 2010) en cuanto a la población registrada en cada uno de los sectores censales. En cada sector censal se identificó un lote promedio y a partir de éste, se cuantificó la densidad de saturación que podría tener el sector en mención. En algunos con la información del catastro predial casos se verificó que la densidad dentro de un sector censal no es homogénea, razón por la cual se procedió a dividir en sub sectores de características similares.

La población proyectada al año 2040 en el área urbana de la ciudad de Paute es de 20.615 personas, distribuidos de diferente forma en un área urbana delimitada de 470 ha.

En la tabla 44, se presenta el porcentaje de la densidad de saturación, adoptada en los diferentes sectores censales y subsectores así como la población proyectada en cada uno de los sectores indicados. Cabe indicar que la delimitación de los subsectores se realizó de acuerdo a las diferentes densidades determinadas a partir de la información levantada en el catastro predial.

Tabla 40: : PORCENTAJE DE DENSIDAD POBLACIONAL SEGÚN SECTORES

| υια <del>4</del> 0 ι | ORCENTAJE       |        | Densidad | Población  | GON SECTOR    |
|----------------------|-----------------|--------|----------|------------|---------------|
| Zona                 | Sector De       | Área   | Adoptada | Proyectada | % de La       |
| Censal               | Planificación   | (Ha)   | 2038     | Por Sector | Densidad      |
| Oerisai              | T latillicación | (i ia) | (Hab/Ha) | (Hab)      | de Saturación |
| 1                    | 101-AII         | 59,14  | 37,32    | 2207       | 50,0          |
|                      | 102-A           | 7,74   | 27,61    | 214        | 75,0          |
|                      | 102-B           | 2,70   | 95,05    | 257        | 100,0         |
|                      | 103-AII         | 22,53  | 27,61    | 622        | 75,0          |
|                      | 104-A           | 73,58  | 9,12     | 671        | 100,0         |
|                      | 104-B           | 3,73   | 109,38   | 408        | 100,0         |
|                      | 105-AII         | 4,71   | 101,86   | 480        | 90,0          |
|                      | 106-AII         | 3,01   | 101,97   | 307        | 90,0          |
|                      | 107-AII         | 2,90   | 105      | 304        | 100,0         |
|                      | 108-AII         | 6,36   | 112,78   | 717        | 100,0         |
|                      | 109-AII         | 2,94   | 85,93    | 253        | 100,0         |
|                      | 110-AII         | 4,42   | 111,74   | 494        | 75,0          |
|                      | 111-A           | 7,43   | 85,55    | 636        | 90,0          |
|                      | 111-B           | 11,62  | 45,65    | 530        | 75,0          |
|                      | 112-AII         | 6,02   | 64,18    | 387        | 75,0          |
|                      | 112741          | 0,02   | 01,10    |            | 70,0          |
| 2                    | 201-A           | 3,19   | 33,13    | 106        | 90,0          |
| _                    | 201-B           | 4,00   | 33,13    | 132        | 90,0          |
|                      | 201-C           | 2,59   | 54,51    | 141        | 90,0          |
|                      | 201-D           | 4,52   | 33,13    | 150        | 90,0          |
|                      | 201-E           | 3,21   | 55,77    | 179        | 90,0          |
|                      | 201-F           | 4,17   | 61,97    | 258        | 100,0         |
|                      | 202-A           | 4,17   | 45,43    | 190        | 75,0          |
|                      | 202-B           | 7,03   | 33,13    | 233        | 90,0          |
|                      | 202-C           | 3,98   | 57,54    | 229        | 95,0          |
|                      | 202-D           | 1,75   | 92,97    | 162        | 90,0          |
|                      | 203-A           | 8,44   | 86,37    | 729        | 90,0          |
|                      | 203-B           | 6,61   | 98,24    | 650        | 90,0          |
|                      | 204-A           | 114,36 | 4,75     | 543        | 95,0          |
|                      | 204-A'          | 4,04   | 98,36    | 397        | 90,0          |
|                      | 204-B           | 2,19   | 97,54    | 214        | 80,0          |
|                      | 204-C           | 2,23   | 32,97    | 74         | 90,0          |
|                      | 204-D           | 5,92   | 33,13    | 196        | 90,0          |
|                      | 205-A           | 18,29  | 14,71    | 269        | 30,0          |
|                      | 205-B           | 16,77  | 58,72    | 985        | 90,0          |
|                      | 206-AII         | 6,75   | 80,02    | 540        | 90,0          |
|                      | 207-AII         | 5,87   | 78,88    | 463        | 50,0          |
|                      | 208-A           | 55,03  | 14,72    | 810        | 40,0          |
|                      | 208-B           | 4,03   | 39,01    | 157        | 84,0          |
|                      | 208-C           | 9,06   | 79,67    | 722        | 75,0          |
|                      | 209-A           | 14,54  | 6,84     | 99         | 75,0          |
|                      | 1_00 / 1        | 1 1,0- | 3,0 :    | 100        | 1 . 5,5       |

|   | Zona<br>Censal | Sector De<br>Planificación | Área<br>(Ha) | Densidad<br>Adoptada<br>2038<br>(Hab/Ha) | Población<br>Proyectada<br>Por Sector<br>(Hab) | % de La<br>Densidad<br>de Saturación |
|---|----------------|----------------------------|--------------|------------------------------------------|------------------------------------------------|--------------------------------------|
| Ī |                | 209-B                      | 12,74        | 22,5                                     | 287                                            | 75,0                                 |
| ĺ |                | 210-A                      | 29,43        | 27,61                                    | 813                                            | 75,0                                 |
| Ī |                | 210-B                      | 5,43         | 45,83                                    | 249                                            | 75,0                                 |

Fuente: Spectrum

Elaboración: Estudio Demográfico

## **3.4. DOTACIONES**

Con la finalidad de determinar la dotación de agua potable para la ciudad de Paute, se analizaron y procesaron los registros de micro-medición de los años 2009 y 2010, en él se establecieron los siguientes consumos:

## 3.4.1. DOTACIÓN POBLACIÓN SERVIDA

Una vez procesada la información de la micro-medición de los años 2009 y 2010, se determinó que el consumo promedio por medidor fue de 0.8917 m³/vivienda/día.

Para el procesamiento de la información se establecieron rangos de consumo, dividiendo los usuarios en tres categorías, consumidores rango normal, rango alto y grandes consumidores. Los criterios de rangos de consumo, como la cantidad de usuarios que están dentro de los rangos indicados se establecen en la Tabla 41. Cabe indicar que la cantidad de usuarios que pertenecen a uno u otra categoría es variable, los valores presentados son valores promedios de los dos años de procesamiento de información.

Tabla 41: Resumen de Abonados y Consumo mensual de agua potable (AÑO 2009 AL 2010)

| Categoría               |                       |        |        | Consumo<br>(m³/día) |        |
|-------------------------|-----------------------|--------|--------|---------------------|--------|
|                         | (m <sup>3</sup> /mes) | Número | (%)    | Número              | (%)    |
| 1. Rango Normal         | <40                   | 1.540  | 83,74  | 816                 | 50,03  |
| 2. Rango Alto           | 40 a 80               | 212    | 12,07  | 404                 | 24,77  |
| 3. Grandes Consumidores | >80                   | 77     | 4,19   | 411                 | 25,20  |
| Total                   |                       | 1.839  | 100,00 | 70.487              | 100,00 |

Fuente: Micro-medición de la ciudad de Paute años 2009 y 2010

Según el Código Ecuatoriano para el Diseño de la Construcción de Obras Sanitarias (Norma INEN CO 10.07 -601 – Abastecimiento de Agua Potable y Eliminación de Aguas Residuales en el Área Urbana – R.O. No. 6-1992-08-18), en su numeral 4.1.4 establece que para poblaciones de clima templado en un rango de 5000 a 50000 habitantes, la dotación por usuario podría variar entre 190 y 220 l/día.

A partir del cuadro anterior, sin conocer el porcentaje de pérdidas existentes por la falta de macro-medición a la salida de las reservas, de la información proporcionada por la I. Municipalidad se han asumido pérdidas iniciales del 46%<sup>3</sup>. Adicionalmente se colocó como objetivo que dichas pérdidas se podrían disminuir hasta un 36% hasta el año 2020, en base a los aspectos indicados y suponiendo que se implante el modelo de gestión establecido en el documento de la referencia, se ha adoptado el valor del 30% de pérdidas para el año 2028.

Por otra parte de acuerdo a la cantidad de personas por vivienda establecidos en el censo de noviembre de 2010 para la ciudad de Paute, y considerando que los

.

<sup>3</sup> Cuadro No. 14 "Situación Actual del Servicio de Agua Potable y Alcantarillado", capitulo 6 del documento "Fortalecimiento de Gestión de los Servicios de Agua Potable y Alcantarillado del Gobierno Municipal de Paute – Provincia del Azuay" realizado por el Ing. Efrén Nicolalde – Enero de 2012.

consumos de los usuarios del sistema de agua potable son altos debido a los bajos costos del servicio, seguros que sus valores se irán ajustando a costos reales asumimos que dichos consumos disminuirán paulatinamente en 1,68 l/hab-día hasta el año 2038 (esta consideración se realiza de acuerdo a experiencias de otras ciudades del país como es el caso de la ciudad de Cuenca).

A partir de estas consideraciones se determinó una dotación incluyendo pérdidas de 240 l/hab/día, como se puede determinar en el siguiente cuadro las diferentes dotaciones asumidas por quinquenios

Tabla 42: Cálculo del Consumo Promedio más Pérdidas de AGUA POTABLE POR USUARIO POR DÍA

| Año  | Consumo<br>Total<br>m³/mes | Número de abonados. | Consumo<br>promedio/<br>usuario<br>m³/mes | Índice de<br>Pérdidas<br>% | Consumo<br>promedio /<br>usuario más<br>pérdidas<br>m³/mes | Personas<br>por<br>vivienda<br>(**) | Consumo<br>promedio por<br>persona más<br>pérdidas<br>I/hab/día |
|------|----------------------------|---------------------|-------------------------------------------|----------------------------|------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------|
| 2012 | 59,287                     | 2,274               | 26.07                                     | 46.00                      | 38.06                                                      | 3.61                                | 351.43                                                          |
| 2015 | 67,325                     | 2,615               | 25.75                                     | 42.25                      | 36.63                                                      | 3.61                                | 338.23                                                          |
| 2020 | 75,851                     | 3,181               | 23.85                                     | 36.00                      | 32.44                                                      | 3.61                                | 299.54                                                          |
| 2025 | 84,029                     | 3,735               | 22.50                                     | 32.65                      | 29.85                                                      | 3.61                                | 275.62                                                          |
| 2030 | 91,982                     | 4,327               | 21.26                                     | 30.00                      | 27.64                                                      | 3.61                                | 255.22                                                          |
| 2035 | 101,156                    | 4,942               | 20.47                                     | 30.00                      | 26.61                                                      | 3.61                                | 245.71                                                          |
| 2038 | 106,331                    | 5,306               | 20.04                                     | 30.00                      | 26.05                                                      | 3.61                                | 240.54                                                          |

(\*\*) DATO CALCULADO A PARTIR DEL ÚLTIMO CENSO DE POBLACIÓN Y VIVIENDA DE NOVIEMBRE DE 2010.

## DOTACIÓN POBLACIÓN SIN SERVICIO

La población que no dispone del servicio de agua potable, se aprovisionará del líquido vital a través de los usuarios que dispone del servicio de agua potable, por lo cual se ha asignado una dotación equivalente a 40 l/hab/día.

## 3.4.2. DOTACIÓN POBLACIÓN CONECTADA

La población que se incorporará al sistema de alcantarillado lo hará de manera progresiva durante los diferentes meses del año, por lo cual se ha calculado una dotación promedio entre las asignadas para la población con y sin servicio.

Así por ejemplo, en el año 2025 la dotación para la población nueva conectada es de (275 + 40)/2, es decir 157,5 l/hab/día.

#### 3.5. CAUDALES DE DISEÑO

#### 3.5.1. OBTENCIÓN DE CAUDALES SANITARIOS

El caudal de aguas servidas para el diseño de alcantarillado sanitario está conformado por el caudal de aporte de aguas domésticas y el caudal de infiltración, siendo estos los siguientes:

#### 3.5.1.1. <u>Caudal Medio de aguas domesticas al final del período de diseño</u>

Considerando un 80% de la dotación de agua potable como caudal de aporte de aguas servidas, se tiene:

$$qf = \frac{0.80 \times P \times Df \times M}{86.400}$$

En donde:

qf= Caudal medio de aguas domésticas (l/s).

Df = Dotación de agua potable al final del período de diseño (l/hab/día).

P = Población servida (hab).

Este caudal multiplicado con el factor de mayoración M de caudal instantáneo, se utiliza para el dimensionamiento y evaluación de las tuberías del sistema. La

dotación de agua potable adoptada al año 2038 es de 250 l/hab/día. Para el diseño de las obras de recolección y tratamiento de aguas servidas se consideró el 80% de este valor, es decir de 200 l/hab/día al final del período de diseño (año 2038).

#### 3.5.1.2. Caudal máximo instantáneo al final del período de diseño

El caudal máximo instantáneo, es igual al caudal medio al final del período de diseño multiplicado por el factor de mayoración M, cuya expresión se obtuvo mediante el empleo de la siguiente ecuación determinada en los Planes Maestros de la Ciudad de Cuenca 1989, y que puede ser aplicada por la similitud existente en las costumbres de la región:

$$M = \frac{2,228}{Q^{0,073325}}$$

En donde:

M = Coeficiente de simultaneidad o mayoración.

Condición: M = 4, cuando  $Q < 4 \frac{1}{s}$ 

Rango de límites =  $1.5 \le M \le 4$ 

Q = Caudal medio diario de aguas servidas en (l/s).

De los aforos realizados en las tres principales descargas el valor de M determinado es similar al rango establecido en el párrafo anterior, como se puede observar en la siguiente tabla.

Tabla 43: determinación del valor de M, obtenido en los DIFERENTES AFOROS DE LAS DESCARGAS

| Ubicación del punto de descarga                                 | Valor M obtenido en los aforos |
|-----------------------------------------------------------------|--------------------------------|
| Descarga en el sector de Zhumir                                 | 2.24                           |
| Descarga en el sector de Pirincay (Jardines de Paute)           | 1.68                           |
| Descarga en el sector de Yumancay (propiedad de los Salesianos) | 1.48                           |

FUENTE Y ELABORACIÓN: GAD DE PAUTE.

#### 3.5.1.3. Caudal de Infiltración

Para determinar el caudal de infiltración en la ciudad de Paute, el GAD municipal del cantón Paute ha realizado varios análisis en las diferentes cuencas de descargas de aguas residuales, información que fue entregada a mi persona en donde se detalla lo siguiente:

Se realizó una serie de aforos en las descargas principales de la ciudad de Paute (descargas de Pirincay, Zhumir y Yumancay) durante los días 15, 16, 18, 19, 23 y 24 de agosto de 2011. Estos aforos se efectuaron en época de estiaje, es decir garantizando que los caudales medidos provengan únicamente de las aguas residuales, fugas e infiltración.

El análisis para la obtención de los caudales de infiltración, fue el siguiente:

- se determinó el área de aporte de la descarga,
- en función de los consumos de agua de los años 2009 y 2010, se estableció el consumo promedio diario, de este valor se estimó que el 80% se descarga a las redes de alcantarillado.
- Con los valores de población estimada y de consumo de agua (incluyendo el 40% de pérdidas), se calculó el caudal medio.

- El caudal medio calculado fue comparado con el caudal medio medido en campo, la diferencia de caudales se supuso que es por infiltración.
- Para el cálculo de los caudales unitarios de infiltración, el caudal determinado por esta causa se dividió tanto para el área de aporte de la descarga, como para la longitud total de la tubería que llega a la misma, sin considerar la longitud de las domiciliarias.

De los análisis realizados se pudo determinar los siguientes parámetros:

$$Q_{\rm inf} = 0.04 \times A$$
 -> Sector Centro  $Q_{\rm inf} = 0.09 \times A$  -> Sector Pirincay  $Q_{\rm inf} = 0.01 \times A$  -> Sector Zhumir

En dónde:

$$\begin{split} Q_{\text{inf}} &= 0.6 \times L_{alc} & -> \text{Sector Centro} \\ Q_{\text{inf}} &= 1.0 \times L_{alc} & -> \text{Sector Pirincay} \\ Q_{\text{inf}} &= 0.1 \times L_{alc} & -> \text{Sector Zhumir} \end{split}$$

ó

$$Q_{\inf} = 0.6 \times L_{al}$$
 -> Sector Centro 
$$Q_{\inf} = 1.0 \times L_{alc}$$
 -> Sector Pirincay 
$$Q_{\inf} = 0.1 \times L_{alc}$$
 -> Sector Zhumir

En dónde:

Q<sub>Inf</sub> = Caudal de infiltración en l/s.

Lalc = Longitud de la red de alcantarillado, en kilómetros

Para zonas en donde se proyecte con tuberías de PVC, PAD o PRFV, se ha considerado que la infiltración no sobrepasará el 50% de los valores establecidos, esta consideración se ha realizado primero porque para la conexión de un tramo de 6 metros de tuberías de PVC o 14 metros de tubería de PRFV se realizarán cinco o trece uniones menos respectivamente entre tuberías, que las tubería de hormigón; adicionalmente se ha previsto la unión entre tuberías con junta estanca de caucho. Luego de estas consideraciones se recomienda la utilización de las siguientes ecuaciones de infiltración.

$$Q_{\rm inf} = 0.03 \times A$$

En dónde:

 $Q_{lnf} = Caudal de infiltración en l/s.$ 

A = Área en Hectáreas

ó

$$Q_{\rm inf} = 0.3 \times L_{alc}$$

En dónde:

Q<sub>Inf</sub> = Caudal de infiltración en l/s.

L<sub>alc</sub> = Longitud de la red de alcantarillado, en kilómetros.

A continuación se establecen algunos valores obtenidos de diferentes normativas que rigen a nivel nacional, para su comparación con los resultados de campo obtenidos.

- La Empresa Pública Metropolitana de Agua Potable y Saneamiento de Quito, utiliza el caudal de infiltración igual a la siguiente expresión.

81

$$Q_{\rm inf} = 0.1 \times A$$

En dónde:

Q<sub>Inf</sub> = Caudal de infiltración en l/s.

A = Área en Hectáreas

Del análisis realizado, las normas indicadas recomiendan considerar estas ecuaciones para la determinación de valores máximos de infiltración. Al analizar con los parámetros obtenidos en la ciudad de Paute se puede establecer que los valores determinados están dentro del rango recomendado por las normas por lo tanto serán utilizadas en este proyecto.

## 3.5.1.4. Obtención De Caudales Sanitarios

Por lo tanto el caudal de diseño para alcantarillado sanitario es:

$$q_{\text{max}} = \frac{PP \times Df \times M}{86.400} + 0.03 \times A$$

En dónde:

 $q_{max} = Caudal Máximo (l/s)$ 

PP = Población de saturación calculada al final del período de diseño.

Df = Dotación asumida al final del período de diseño (incluye pérdidas)

M = Coeficiente de Mayoración 0,03 A = Caudal de infiltración (l/s)

A = Área en Hectáreas

En las zonas donde existe alcantarillado o en donde se prevé su construcción, se ha establecido que el 100% de los moradores contarán con este servicio, es decir en estos sectores la cobertura a ser adoptada será del 100%.

## 3.5.2. OBTENCIÓN DE CAUDALES PLUVIALES

Los caudales pluviales se obtendrán tanto con el método racional como con el empleo del método US SCS (Curve number), la aplicación de cada uno de estos depende del área de aporte, así el primero se utiliza para áreas de aporte acumuladas inferiores a 80 ha, mientras que el segundo para valores superiores.

Realizando el ajuste a ecuaciones del tipo  $I = A(t+C)^B$ , para diferentes T (períodos de retorno), se obtienen los siguientes valores de los parámetros A, B y C.

Tabla 44: ECUACIONES IDF PARA PAUTE

| Т        | Α      | С    | В        |
|----------|--------|------|----------|
| 2 Años   | 2066,9 | 16,1 | -0,99484 |
| 3 Años   | 2384,3 | 16,1 | -0,99484 |
| 5 Años   | 2732,5 | 16,1 | -0,99484 |
| 10 Años  | 3161,8 | 16,1 | -0,99484 |
| 15 Años  | 3400,6 | 16,1 | -0,99484 |
| 20 Años  | 3566,7 | 16,1 | -0,99484 |
| 25 Años  | 3694,1 | 16,1 | -0,99484 |
| 50 Años  | 4084,8 | 16,1 | -0,99484 |
| 100 Años | 4471,3 | 16,1 | -0,99484 |

Fuente: INAMHI, GAD MUNICIPAL DE PAUTE

$$I = A(t+C)^B$$

En donde:

I = Intensidad de Iluvia (mm/h)

t = tiempo (minutos) de concentración de la lluvia más tiempo de recorrido = <math>(tc + tr = t)

A,B,C = Parámetros de ajuste.

El tiempo de concentración, el inicial mínimo 12 minutos ó el calculado con fórmula:

$$tc = \frac{0.0195 \times L^{1.155}}{\left(Dif.niv\right)^{0.385}}$$

En donde:

tc = tiempo de concentración en minutos

Dif.niv = Diferencia de nivel a la cuenca aportante.

L = Longitud de recorrido antes de ingresar al colector en metros.

y, para tiempo de recorrido:

$$tr = \frac{1}{60} \sum \left( \frac{Li}{Vi} \right)$$

En donde

L = Li = Longitud del Colector (m)
Vi = Velocidad en el colector (m/s)

Se han considerado los siguientes períodos de retorno en años, para:

Redes secundarias3 añosRedes principales5 añosColectores interceptores10 años

El cálculo del caudal pluvial por el método racional, se realiza empleando la Ecuación conocida:

$$Q = \frac{C \times I \times A}{0,360}$$

En donde:

Q = caudal en l/s

C = coeficiente de escurrimiento

A = Área de drenaje en hectáreas.

I = intensidad de lluvia en mm/hora.

Para la determinación del Coeficiente de Escurrimiento (C), se analizó lo establecido por la EPMAPS-Quito que presenta en la siguiente tabla:

Tabla 45: COEFICIENTE DE ESCURRIMIENTO

| Coeficiente | Descripción                                                                     |  |
|-------------|---------------------------------------------------------------------------------|--|
| 0,70        | Para centros urbanos con densidad de población cercana a la de saturación y con |  |
|             | calles asfaltadas.                                                              |  |
| 0,60        | Para zonas residenciales de densidad, D ≥ 200 Hab/Ha.                           |  |
| 0,55        | Para zonas con viviendas unifamiliares, 150 < D < 200                           |  |
| 0,50        | Para zonas con viviendas unifamiliares, 100 < D < 150                           |  |
| 0,40        | Para zonas con viviendas unifamiliares, D < 100                                 |  |
| 0,40        | Para zonas Rurales con población dispersa.                                      |  |

Fuente: Normas EPMAPS

En función de estos criterios y la realizada de Paute, en la siguiente tabla se resumen los valores de C adoptados para los diferentes sectores de la ciudad.

Tabla 46: COEFICIENTES DE ESCORRENTIA PARA LA DETERMINACION DEL CAUDAL PLUVIAL PARA EL ALCANTARILLADO DE PAUTE

| ZONA | SECTOR                                 | COEFICIENTE<br>ESCORRENTIA | DE |
|------|----------------------------------------|----------------------------|----|
| 1    | Centro de la ciudad                    | 0,7                        |    |
| 2    | Pirincay – Jardines de Paute           | 0,5                        |    |
| 3    | Poco consolidadas – periferia de Paute | 0,35                       |    |

## 3.5.3. CAUDAL DE ALCANTARILLADO COMBINADO

La red a diseñar en la ciudad de Paute, en el estudio de "Ampliación y Mejoramiento del Alcantarillado del Centro Cantonal de Paute" será de tipo de alcantarillado combinado.

El caudal de diseño para alcantarillado combinado estará constituido por el caudal máximo de aguas residuales y el caudal de aguas lluvias:

$$Q = Q_{lluv} + q_{max}$$

En donde:

Q = Caudal de diseño de alcantarillado combinado.

 $Q_{lluv}$  = Caudal de aguas lluvias.

q<sub>max</sub>= Caudal máximo instantáneo de aguas servidas.

#### 3.5.4. CÁLCULOS HIDRÁULICOS DE LA RED

Las tuberías y canales de hormigón se evaluaron a tubo lleno, manteniendo las condiciones de flujo a gravedad en los colectores o tuberías.

#### 3.5.5. VELOCIDADES DE DISEÑO

Las velocidades en los conductos se obtuvieron empleando la fórmula de Manning Strickler, cuya expresión es:

$$V = \frac{R^{\frac{2}{3}} \times J^{\frac{1}{2}}}{n}$$

En donde:

V = velocidad (m/s)

J = pendiente del conducto (m/m)

R = radio hidráulico (R = A/P)

A=área mojada (m²)

P=perímetro mojado (m)

n = Coeficiente de Manning.

El coeficiente de rugosidad n, empleado para la evaluación se tomo según el tipo de material de tubería o colector de acuerdo a lo recomendado por el Código Ecuatoriano para el Diseño de la Construcción de Obras Sanitarias (Norma INEN CO 10.07 -601 –R.O. No. 6-1992-08-18) o para el caso de tubería de PRFV lo recomendado por el fabricante, y se resume en la tabla siguiente:

Tabla 47: COEFICIENTE DE RUGOSIDAD EMPLEADO

| TIPO DE CONDUCTO                    | RANGO       | n     |
|-------------------------------------|-------------|-------|
| Tubería de hormigón simple          | 0,012-0,015 | 0,013 |
| Tubería de plástico o PVC corrugada |             | 0,013 |
| Tubería de PRFV                     |             | 0,009 |

| TIPO DE CONDUCTO                                           | RANGO       | n     |
|------------------------------------------------------------|-------------|-------|
| Tubería de termoplástica de interior liso o PVC            |             | 0,010 |
| Colectores y tuberías de hormigón armado, fundido en sitio | 0,013-0,015 | 0,015 |
| Ladrillo                                                   | 0,014-0,019 | 0,016 |
| Mampostería de piedra                                      | 0,017-0,020 | 0,018 |

Criterios de velocidad en los conductos:

V.min a tubo lleno
V. mín de auto limpieza (para Q sanitario)
V. máxima de diseño en tuberías de hormigón
V. máxima de diseño en canales y colectores, de hormigón armado y 9.00 m/s tuberías termoplásticas, PVC, PAD o PRFV.

Para velocidades superiores a las indicadas, se proyectaron y diseñaron estructuras hidráulicas de disipación de energía (rápidas) que permitan pasar de régimen supercrítico a la salida de dichas estructuras.

# 3.5.6. EVALUACIÓN HIDRÁULICA DE COLECTORES Y REDES DE ALCANTARILLADO EXISTENTES

La evaluación hidráulica de los colectores y redes de alcantarillado existentes se lo efectuó con los mismos parámetros establecidos en los numerales precedentes y su capacidad se lo evaluará al 80% o 90% de su capacidad a tubería llena, dependiendo el tipo de sistema.

Capacidad máxima de los colectores:

La capacidad máxima admitida en los colectores, existentes y las que se diseñarán será evaluada de la siguiente forma:

#### a. TUBERÍAS CIRCULARES

- Alcantarillado sanitario: Y/D= 0.8

87

- Alcantarillado pluvial y combinado Y/D = 0.9

En donde Y = calado o altura de lámina de agua

D = diámetro de la tubería

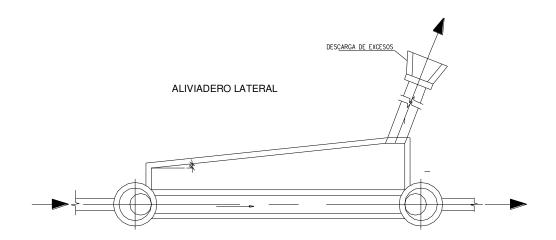
b. CANALES

- Alcantarillado sanitario: y/H = 0.75

- Alcantarillado pluvial y combinado y/H = 0.9

En donde: Y = altura de lámina de agua

H = altura del canal.


#### 3.5.7. DISEÑO DE ALIVIADEROS

En vista que el sistema de alcantarillado que se diseñó en la Ampliación y Mejoramiento del Alcantarillado del centro cantonal de Paute es combinado, para optimizar el dimensionamiento del sistema de alcantarillado es adecuado prever vertederos laterales de alivio de caudales pluviales siempre y cuando se pueda descargar a un cauce hídrico cercano.

Los aliviaderos laterales funcionaran en condiciones que las tuberías a más de las aguas residuales y de infiltración recolectadas normalmente, transporten aguas lluvias y su caudal supere de tres veces el caudal sanitario máximo instantáneo, como se indica posteriormente. Cuando se supere estos caudales los aliviaderos laterales desfogarán una mezcla de aguas lluvias con aguas residuales, produciéndose contaminación de los cauces hídricos. Dicha contaminación será ocasional y su duración se dará mientras se mantenga las condiciones de lluvia en la zona. A la vez que aumenta en caudal de recolección de aguas lluvias en la red de alcantarillado

combinado, se incrementará el caudal en los cauces hídricos, produciéndose una mayor dilución de las aguas servidas que lleguen a los río o quebradas, minimizando el grado de contaminación y por ende disminuyendo el impacto hacia el entorno.

ILUSTRACIÓN 3.5.1: ALIVIADERO LATERAL DE EXCESOS



Debido a las condiciones topográficas de la ciudad de PAUTE, cuando se produzcan grandes crecientes del río Paute, los aliviaderos laterales cuya descarga se de en mencionado río podrán dejar de funcionar ocasionalmente mientras el nivel del río sea igual o superior al nivel del agua a la salida de los aliviaderos laterales. Esto podría causar inundaciones ocasionales en ciertas partes de la zona baja de la ciudad de PAUTE.

Para el diseño de aliviaderos de caudales pluviales hacia cauces hídricos se ha considerado que la línea agua a producirse en el vertedero lateral de acuerdo a las condiciones de las redes de alcantarillado será descendente, por tal motivo para el cálculo de estos elementos se empleará la ecuación de Ackers. La Energía específica en el vertedero lateral se calcula con la siguiente expresión:

$$Ew = \frac{\alpha \times vn^2}{2 \times g} + (dn - Y)$$

En donde:

vn= Velocidad con caudal máximo m/s

α = Coeficiente corrección energía cinética

g= Aceleración de la gravedad (m/s²)

dn = Altura del canal para Q máximo (m)

Ew = Cálculo de la energía específica (m)

Y = Altura del vertedero sobre la solera del canal (m)

La altura a la que debe estar el vertedero lateral de desfogue sobre la solera de la tubería (Y), se determina considerando que el caudal que circula por la tubería es mínimo de tres a cinco<sup>4</sup> veces el caudal medio diario sanitario al final del período de diseño, se ha adoptado 3 veces el caudal máximo instantáneo al final del período de diseño. Esta consideración se hace para asegurar que no se produzca desborde de caudal sanitario hacia un cauce hídrico garantizando que cuando se den los caudales máximos instantáneo no se contaminen los cauces hídricos. La relación entre la altura del vertedero y la Energía Específica, debe ser menor a 0.6, como se puede aprecia en la siguiente expresión.

$$w = \frac{Y}{F_W} \le 0.6$$

En donde:

W = Relación calado a energía Específica

Ew = Cálculo de la energía específica

Y = Altura del vertedero sobre la solera del canal

4 Recomendación tomada del libro Diseño de Redes de Alcantarillado de Simón Arrocha

La longitud del vertedero lateral de alivio de caudales se calculara con la expresión de Ackers que se presenta a continuación:

$$L_2 = 2.03 \times B \times \left[ 2.828 \times \sqrt{(n_2 - 0.4)(1 - 0.4w)} + 0.31w - 0.984ar \cos \sqrt{(0.4/n_2)} + 0.065 \right]$$

En donde:

 $n_2$  = Relación entre  $h_1$  y  $h_2$  (calado de ingreso y calado de salida)

L<sub>2</sub> = Longitud requerida para el vertedero
 W = Relación calado a energía Específica
 B = Diámetro de la tubería o ancho del canal

La altura inicial del agua sobre el vertedero lateral se determina a partir de la siguiente ecuación:

$$h_1 = 0.5 \text{ x Ew}$$

En donde:

 $h_1 =$  Altura del calado de agua en el vertedero al ingreso

Ew= Energía específica

La altura final del agua sobre el vertedero lateral de desfogue, se obtiene de la siguiente ecuación.

$$h_2 = \frac{h_1}{n_2}$$

En donde:

 $h_2$  = Altura del calado de agua en el vertedero a la salida

h<sub>1</sub>= Altura del calado de agua en el vertedero al ingreso

 $n_2$  = Relación entre  $h_1$  y  $h_2$  (calado de ingreso y calado de salida)

El calado de agua en el canal posterior al vertedero lateral se determina con la siguiente expresión:

$$d_2 = Y + h_2$$

En donde:

d<sub>2</sub> = Calado de agua a la salida del vertedero lateral

 $h_2 =$  Altura del calado de agua en el vertedero a la salida

Y= Altura del vertedero sobre la solera del canal

#### **CAPITULO 4**

#### DISEÑO DEL INTERCEPTOR

## 4. DISEÑO DE LA RED DE ALCANTARILLADO PARA INTERCEPTOR

#### 4.1.1. TIPO DE ALCANTARILLADO A SER IMPLEMENTADO.

Como se puede revisar en la evaluación de la red de alcantarillado, en la ciudad de Paute, las redes existentes son tanto de alcantarillado combinado, sanitario y en un pequeño sector separado. Dela misma manera en la evaluación en mención, se concluyó que en algunos tramos en los que existían redes de alcantarillado sanitario, se habían conectado sumideros de las vías a estas tuberías.

Por otra parte en un sector donde se ha construido alcantarillado separado, es decir tuberías para recolectar el agua pluvial y otras para transportar el agua residual, se pudo determinar que algunas domiciliarias de aguas residuales se habían conectado a las redes de alcantarillado pluvial, y los sumideros a las tuberías de alcantarillado sanitario. De igual forma en muchas casas la recolección tanto de aguas lluvias como de las aguas residuales se lo realiza utilizando una sola tubería que descarga a la red de alcantarillado.

Por lo expuesto, se ha adoptado como mejor solución de implementación de las redes de alcantarillado el diseño y la construcción de un sistema combinado, es decir que por la misma tubería pueda transportarse tanto el agua residual como el agua lluvia. De esta forma a más de evitar los inconvenientes detectados y descritos en los párrafos anteriores, se permitirá optimizar los costos de inversión, ya que será necesaria la

colocación de una sola tubería y no de dos como demanda las redes de sistemas separados.

Para optimizar el diámetro de las tuberías a ser empleadas en las redes de alcantarillado combinado, se ha previsto la construcción de aliviaderos pluviales, los que conectarán a un cauce hídrico.

Por otra parte en las zonas de baja densidad urbana, y ubicadas en la periferia de la ciudad se ha previsto la implementación de redes de alcantarillado sanitario.

#### 4.1.2. DIÁMETRO MÍNIMO

El diámetro mínimo para alcantarillado pluvial 0.25 m, mientras para alcantarillado sanitario es de 0.20 m, según el Código Ecuatoriano para el Diseño de la Construcción de Obras Sanitarias (Norma INEN CO 10.07 -601 – R.O. No. 6-1992-08-18).

Los diámetros de hasta 0,60 m serán de tubería de PVC serie 5. Los diámetros mayores que 0.50 m serán con tubería de PRFV. Para los diámetros de 0.60 m, se ha diseñado tanto con tubería de PVC o PRFV, la selección del material se ha dado en base a dos factores, la capacidad de conducción del caudal y la velocidad que alcance el flujo en el interior de la tubería.

Se ha adoptado la tubería de PRFV para diámetros mayores a 0.60 m, por los siguientes aspectos:

- Es una tubería estanca que no permite el ingreso de agua de infiltración.
- La longitud de la tubería es de 14 m, comparada con la de PVC que es de 6m, por lo tanto tiene una menor cantidad de juntas estancas de neopreno, en

consecuencia al tenor una menor cantidad de estas juntas, la probabilidad de fallo en el cierre hermético es menor.

- En la instalación de la tubería de PRFV se prueban cada una de las juntas estancas, garantizando su completa hermeticidad.
- El espesor de las paredes de la tubería de PRFV al tener una mayor rigidez, garantiza una menor deformación frente a la tubería de PVC, y cualquier falla en el relleno puede ser absorbida de mejor manera por las paredes de PRFV que la de PVC.
- Al presentarse materiales en las tuberías como grava o arena, producto de una lluvia, y al golpear estos con las paredes de las tuberías, el PRFV presenta mayor resistencia que el PVC frente a la abrasión y la impacto, en consiguiente la posibilidad de fracaso por impacto es menor. Al no estar pavimentadas la capa de rodadura de muchas de las vías de Paute, es muy factible el ingreso de los materiales en mención.

Las tuberías se diseñarán para que funcionen a sección parcialmente llena según la relación y/D menor o igual a 0.90 para redes combinadas y pluviales.

Los colectores que descarguen a algún cauce hídrico obligatoriamente en su tramo final se construirán de hormigón simple o armado.

Se ha previsto la construcción de las redes de alcantarillado con tubería Plástica con unión elastomérica, debido a que el nivel freático se encuentra superficial y con la finalidad de minimizar el agua de infiltración. Las tuberías se diseñarán para que funciones a sección parcialmente llena según la relación Y/D menor o igual a 0.90 para redes combinadas y pluviales. Para el dimensionamiento de la redes de alcantarillado se considerarán los diámetros interiores. En la tubería de PRFV el diámetro interior mínimo coincide con el diámetro nominal. Para las tuberías de plástico (PVC ó PAD),

el diámetro interior mínimo difiere del nominal, en la tabla siguiente se da la denominación de la tubería utilizada, su diámetro nominal y su diámetro interior mínimo.

Tabla 48: DIÁMETROS MÍNIMOS DE LA TUBERÍA PLÁSTICA

|              | DIAMETRO | DIAMETRO    | MATERIAL  |
|--------------|----------|-------------|-----------|
| DENOMINACION | NOMINAL  | INTERIOR    |           |
|              | (mm)     | MINIMO (mm) |           |
| DNP15        | 150      | 135         | PVC ó PAD |
| DNP20        | 200      | 180         | PVC ó PAD |
| DNP25        | 250      | 215         | PVC ó PAD |
| DNP30        | 300      | 270         | PVC ó PAD |
| DNP35        | 350      | 340         | PVC ó PAD |
| DNP40        | 400      | 390         | PVC ó PAD |
| DNP50        | 500      | 450         | PVC ó PAD |
| DNP55        | 550      | 516         | PVC ó PAD |
| DNP60        | 600      | 580         | PVC ó PAD |
| 600          | 600      | 600         | PRFV      |
| 700          | 700      | 700         | PRFV      |
| 750          | 750      | 750         | PRFV      |
| 800          | 800      | 800         | PRFV      |
| 900          | 900      | 900         | PRFV      |
| 1000         | 1000     | 1000        | PRFV      |
| 1100         | 1100     | 1100        | PRFV      |
| 1200         | 1200     | 1200        | PRFV      |

#### 4.1.3. POZOS DE REVISIÓN

Se colocarán al inicio de tramos de cabecera; en todo cambio de pendiente, dirección y sección. Si se define en el proyecto la necesidad de apertura de calles de manera de solucionar el drenaje o por necesidad de desarrollo urbano se considerará pozos a la salida de las nuevas calles.

La máxima distancia entre pozos adoptada para este proyecto y que concuerda con valores que se emplean en varias ciudades del país como en el caso de la ciudad de Quito (EPMAPS) es de 80 m. Entre puntos de intersección de los ejes de las vías, en los tramos de fuertes pendientes o marginales se consideraron pozos intermedios.

Los pozos de revisión en tuberías hasta 700 mm, serán construidos con paredes de Hormigón Ciclópeo con una abertura de 60 cm y un diámetro interior de 900mm, los pozos en tuberías superiores a los 700 mm de diámetro se construirá el pozo de diámetro interior de 1200 mm o hasta tubería de 1000 mm y de 1500 mm hasta tubería de 1300 mm, el espesor de los pozos será de 0.3 m.

El fondo del pozo deberá tener cuantos canales sean necesarios para permitir el flujo adecuado del agua a través del pozo sin interferencia hidráulicas que conduzcan a pérdidas grandes de energía.

Los pozos de salto se considerarán para saltos mayores a 0.60 m, se diseñarán con disipadores de energía: como tanques, pantallas.

Se considerarán diseños especiales en hormigón armado para los siguientes casos: los pozos implantados sobre colectores, los pozos mayores de 4,50 m de profundidad y pozos con estructuras de disipación de energía.

Los pozos de disipación de energía serán de impacto y se utilizarán cuando se produzcan saltos mayores a los especificados o cuando las velocidades en las tuberías de llegada superen los 4.5 m/s. Los pozos de impacto consistirán en cajas de hormigón armado de forma rectangular, en el que la tubería de ingreso no estará alineada con la tubería de salida, sino se colocará diametralmente opuesta en la cámara. Las medidas de las cámaras son variables y depende de los diámetros de ingreso de la tubería. Estos pozos de impacto garantizarán la disipación de la energía.

Los detalles constructivos de los diferentes pozos se encuentran en el capítulo No. 3 de los planos adjuntos.

#### 4.1.4. PROFUNDIDADES

La red de alcantarillado se diseñará a profundidades que permitan la evacuación de las aguas lluvias y/o servidas de los predios a cada lado de las calles, desde los puntos de nivel más bajo referido a las rasantes de la calzada. Para las profundidades se ha utilizado lo establecido por el Código Ecuatoriano para el Diseño de la Construcción de Obras Sanitarias (Norma INEN CO 10.07 -601 –R.O. No. 6-1992-08-18) que indica que la profundidad mínima en pozos de salida será de 1,50 metros. En condiciones normales, el diseño se realizará entre 2 y 3 metros de profundidad.

Para profundidades mayores a 5,0 metros, dependiendo del caso se ha considerado ramales auxiliares al pie del lote (Cota más baja), que se implantarán en espacios verdes del predio, calles o pasajes.

Para el diseño de los colectores principales en lo posible deberán estar a profundidades inferiores de 6 m; las redes secundarias y primarias existentes seguirán funcionando en los diferentes tramos, y luego en los pozos de revisión se conectarán a los colectores principales.

#### 4.2. DISEÑOS DEFINITIVOS DEL INTERCEPTOR

#### 4.2.1. INTRODUCCIÓN

En este capítulo se presentan los diseños definitivos de los diferentes componentes del sistema de alcantarillado combinado de la ciudad de PAUTE.

A partir de los resultados de la evaluación y al determinar las zonas que no tienen servicio de alcantarillado combinado dentro de la zona urbana, la ciudad de Paute fue dividida para el diseño de redes de recolección de alcantarillado. Cada una de estas

redes conecta al interceptor marginal al río Paute (Interceptor desde Zhumir a Yumancay), de la misma manera que las redes de alcantarillado existente.

Dentro de las redes de recolección existente, se ha diseñado ciertos tramos que de acuerdo a la evaluación realizada en la primera etapa son insuficientes.

Las redes diseñadas de alcantarillado combinado son las de los sectores centro de Paute (Calvario, Centro, Luntur, Cdla. Don Bosco, Pancalle, Los Sauces, El Centenario, Virgen Pamba), Pirincay – Jardines de Paute (La Playa, Las Peñas, 11 de febrero, Pirincay), mientras que en el sector de Tutucán por las características de la zona se ha diseñado una red sanitaria

Tanto las aguas servidas como las pluviales se conectan al alcantarillado combinado diseñado, cada una de las redes tendrá en su recorrido aliviaderos laterales de caudales pluviales; dichos aliviaderos conectan por medio de una descarga a un río que atraviesa la ciudad.

#### 4.3. DESCRIPCIÓN DE LOS DISEÑOS DE LOS INTERCEPTORES.

Las diferentes redes de recolección de alcantarillado descargan en el interceptor. Por la configuración geográfica de la ciudad, como ha ido creciendo se va a diseñar un interceptor principal, ubicado en la margen izquierda del río Paute, desde la zona de Zhumir hasta Yumancay.

## 4.3.1. INTERCEPTOR DE LA MARGEN IZQUIERDA RÍO PAUTE: DESDE ZHUMIR HASTA YUMANCAY DEL CANTÓN PAUTE.

Este interceptor nace en la calle Camilo Ponce (sector del puente del Zhumir sobre el río Paute), posteriormente sigue a través de la Av. Luis Enrique Vásquez, hasta llegar a una futurible estación de bombeo. En su recorrido atraviesa los ríos Pirincay y

Cutilcay. A lo largo de su trazado se ha previsto la construcción de 15 vertederos laterales de alivio que descargarán las aguas lluvias en el río Paute.

A este colector descargarán las aguas servidas de Zhumir y Tutucán, así como las aguas lluvias y servidas de los sectores de las Pirincay, Once de Febrero, Jardines de Paute, las Peñas. La Playa, centro urbano, Calvario, Luntur, ciudadela Don Bosco, Virgen Pamba, el Centenario.

El interceptor será construido con tubería plástica (PVC o PAD) y Poliéster Reforzado con Fibras de Vidrio (PRFV), y tiene una longitud de 3.900 aprox. m desde la calle Camilo Ponce (sector Zhumir) hasta su desembocadura en el rio Paute, su pendiente en la mayoría de su recorrido es del 0.40%. Sus diámetros serán variables desde tubería de diámetro nominal 350 mm de PVC a 600 y 700 mm de PRFV y un tramo de 1100 mm PRFV. El caudal medio a transportar será de 291.62 l/s y el máximo de 2680.80 l/s.

La longitud total diseñada es de 3.929.57 m, en 72 tramos. En la siguiente tabla se presenta la longitud de los diferentes diámetros a utilizar en el Interceptor.

Tabla 49: INTERCEPTOR MARGINAL – LONGITUD DE TUBERÍAS A INSTALAR

| DIÁMETRO | MATERIAL DE LA TUBERÍA | LONGITUD |
|----------|------------------------|----------|
| DNP30    | PVC ó PAD              | 1051,56  |
| DNP35    | PVC ó PAD              | 178,31   |
| DNP40    | PVC ó PAD              | 165,21   |
| DNP50    | PVC ó PAD              | 370,46   |
| DNP55    | PVC ó PAD              | 359,43   |
| DNP60    | PVC ó PAD              | 441,99   |
| 600      | PRFV                   | 435,61   |
| 700      | PRFV                   | 619,58   |
| TOTAL    |                        | 3622,15  |

PAD = Polietileno de Alta Densidad, PVC = Policloruro de Vinilo, PRFV = Poliéster reforzado con fibras de vidrio. Para la interconexión de los diferentes tramos de las tuberías se utilizarán pozos de revisión, se construirán en esta zona un total de 72 pozos, de los cuales 52 serán pozos de revisión y 6 pozos disipadores de energía que también servirán como pozos de revisión, y 14 pozos especiales para tuberías con diámetros mayores a 600 mm, sus alturas serán variables. En el cuadro siguiente se hace un resumen de los diferentes tipos de pozos por alturas.

Tabla 50: INTERCEPTOR MARGINAL – No. DE POZOS

| Pozos Revis | Pozos Revisión |           | mpacto   | Pozos Especiales |          |  |
|-------------|----------------|-----------|----------|------------------|----------|--|
| Altura      | Cantidad       | Altura    | Cantidad | Altura           | Cantidad |  |
| 0 a 1.5 m   | 0              | 0 a 2.0 m | 0        | 0 a 2.0 m        | 0        |  |
| 0 a 2.0 m   | 6              | 0 a 3.0 m | 1        | 0 a 3.0 m        | 6        |  |
| 0 a 2.5 m   | 10             | 0 a 4.0 m | 3        | 0 a 4.0 m        | 9        |  |
| 0 a 3.0 m   | 17             | 0 a 5.0 m | 1        | 0 a 5.0 m        | 3        |  |
| 0 a 3.5 m   | 6              | 0 a 6.0 m | 1        | 0 a 6.0 m        | 1        |  |
| 0 a 4.0 m   | 6              |           |          |                  |          |  |
| 0 a 4.5 m   | 1              |           |          |                  |          |  |
| 0 a 5.0 m   | 1              |           |          |                  |          |  |
| 0 a 5.5 m   | a 5.5 m 0      |           |          |                  |          |  |
| TOTAL =     | 47             | TOTAL =   | 6        | TOTAL =          | 19       |  |

Para el dimensionamiento de los vertederos laterales, se ha considerado que inicien su funcionamiento cuando se produzca una dilución de tres veces del caudal máximo sanitario, de acuerdo a lo indicado en el numeral 3.5.7. Los diseños de los vertederos laterales se basaron en la ecuación de Ackers como se indicó en el mencionado capítulo, y fueron comprobados por la ecuación de Babbit.

En el siguiente cuadro se resume, las longitudes, niveles de los vertederos con respecto al fondo del canal, caudal de desfogue, diámetros de las tuberías de ingreso salida y desfogue, de cada uno de los vertederos que constituyen en colector Ignacio Jaramillo.

Tabla 51: ALIVIADEROS DEL interceptor marginal de paute

| ALIVIADERO        | Longitud<br>del<br>Vertedero | Sobre El  | Caudal de<br>Desfogue<br>del | Diámetros Nominales de Las<br>Tuberías |        |          | Cota del<br>Vertedero<br>de Alivio | Cota de<br>Descarga |
|-------------------|------------------------------|-----------|------------------------------|----------------------------------------|--------|----------|------------------------------------|---------------------|
|                   | (m)                          | Canal (m) | Vertedero<br>(l/s)           | Ingreso                                | Salida | Desfogue | (m.s.n.m)                          | (m.s.n.m)           |
| Aliviadero No. 2  | 5.70                         | 0.10      | 340.01                       | DNP 60                                 | DNP 30 | DNP 60   | 2175.514                           | 2174.408            |
| Aliviadero No. 3  | 12.50                        | 0.11      | 764.73                       | 700                                    | DNP 35 | 700      | 2174.481                           | 2173.671            |
| Aliviadero No. 4  | 12.00                        | 0.11      | 979.00                       | DNP 60                                 | DNP 35 | DNP 60   | 2173.645                           | 2170.629            |
| Aliviadero No. 5  | 8.60                         | 0.15      | 456.69                       | DNP 60                                 | DNP 35 | DNP 60   | 2172.746                           | 2171.311            |
| Aliviadero No. 6  | 14.50                        | 0.14      | 1664.08                      | 800                                    | DNP 30 | 800      | 2172.144                           | 2171.595            |
| Aliviadero No. 7  | 11.30                        | 0.17      | 939.87                       | 800                                    | DNP 50 | 800      | 2171.478                           | 2171.243            |
| Aliviadero No. 8  | 7.10                         | 0.16      | 1091.31                      | 800                                    | DNP 50 | 800      | 2170.771                           | 2170.412            |
| Aliviadero No. 9  | 7.90                         | 0.17      | 518.12                       | DNP 60                                 | DNP 50 | DNP 60   | 2170.327                           | 2169.955            |
| Aliviadero No. 10 | 10.10                        | 0.16      | 949.27                       | 700                                    | DNP 50 | 700      | 2169.428                           | 2169.236            |
| Aliviadero No. 11 | 18.40                        | 0.14      | 2878.56                      | 1100                                   | DNP 55 | 1100     | 2168.509                           | 2168.184            |
| Aliviadero No. 12 | 14.30                        | 0.20      | 1696.66                      | 700                                    | DNP 55 | 700      | 2167.416                           | 2166.785            |
|                   |                              |           |                              |                                        |        |          |                                    |                     |

ELABORACIÓN: PROPIA

Los cálculos del Interceptor y de los Aliviaderos anteriormente nombrados en este capitulo se encuentran dentro de los ANEXOS con el nombre de "DISEÑO Y PLANOS DEL INTERCEPTOR Y CALCULO DE ALIVIADEROS" donde se muestran donde están colocados así como los perfiles para su construcción.

#### **CAPITULO 5**

#### ESTUDIO DE IMPACTO AMBIENTAL

#### 5. ESTUDIO DE IMPACTO AMBIENTAL

## 5.1. ESTUDIO DE IMPACTO AMBIENTAL Y MANUAL DE MITIGACIÓN AMBIENTAL

Para la ejecución y un funcionamiento armónico de las obras de alcantarillado con el medio ambiente se ha realizado un estudio de Impacto Ambiental, con su respectivo plan de manejo, que se deberá aplicar en las diferentes fases del proyecto. Dicho estudio se encuentra en proceso de revisión por parte del Ministerio del Ambiente, para obtener la respectiva Licencia Ambiental. A continuación se presenta un resumen de los principales contenidos del EsIA:

#### **5.1.1. OBJETIVO DEL ESIA**

Elaborar el Estudio de Impacto Ambiental del Proyecto de Ampliación y Mejoramiento del Alcantarillado del cantón Paute, ajustándose a los requerimientos estipulados en el Sistema Único de Manejo Ambiental (SUMA) del Texto Unificado de Legislación Ambiental Secundaria, a fin de que se proceda a su revisión, aprobación y otorgamiento de la Licencia Ambiental necesaria para la construcción y operación-mantenimiento del mismo, de tal manera que se permita al Municipio de Paute realizar una gestión socio-ambiental adecuada en sus áreas de influencia.

#### 5.1.2. LÍNEA BASE AMBIENTAL

#### *5.1.2.1. Medio Físico*

En el área de influencia del proyecto la temperatura media anual es de 16.5 °C, con temperaturas medias tanto para máximos y mínimos anuales de 17 °C y 15.8 °C respectivamente. Los meses de mayor precipitación en la ciudad de Paute son febrero, marzo y diciembre, siendo el de mayor precipitación máxima mensual febrero con 235,6 mm. El mes con menos precipitaciones registradas es agosto, con precipitaciones máximas de 91 mm, medias de 37,1 mm y mínimas de 7,6 mm. Paute presenta una humedad relativa media anual de 78.7%, con una media máxima de 97.8% y una media mínima de 43.1%.

El sistema hídrico de la zona de estudio, se encuentra constituido por la subcuenca del río Cutilcay y las microcuencas de las quebradas: Chitayacu, Pirincay y Yumancay, todas éstas que forman parte de la Cuenca del Río Paute. Éstos recursos hídricos fueron monitoreados para determinar la calidad del agua y en base a los resultados obtenidos en el Índice de calidad de Agua (ICA) podemos decir que el río Paute (inicio de la ciudad), Q. Yumancay y Q. Chitayacu tienen una calidad de agua regular, mientras que el agua del rio Paute (final de la ciudad) y del R. Cutilcay es mala.

Los principales usos de suelo identificados en base a la cartografía del IGM a escala 1:50000 son: Vegetación Leñosa (0,61%), Pastos (0,04%), Agua (1,98%), Centros Poblados (7,26%), Cultivos (28,52%), Mosaico: Vegetación leñosa, Asentamientos Humanos, cultivos, pasto (49,56%), Suelo Descubierto (12,03 %).

#### 5.1.2.2. Análisis de riesgos naturales o amenazas naturales

Los riesgos exógenos a los que se encuentra expuesto el proyecto de alcantarillado son los siguientes:

- Riesgo de Inundaciones: dentro del área de influencia las zonas con riesgo alto de inundaciones son las que se encuentran a lo largo del río Paute, ya que son zonas bajas con poca pendiente. Riesgo medio existe en las zonas que se encuentran cerca al río Cutilcay y a las quebradas Yumancay y Chitayacu.
- Riesgo de deslizamientos: en general el área de influencia del proyecto, presenta un riesgo bajo de deslizamientos, sin embargo en las zonas norte, suroeste y junto a la vía interoceánica se evidencia un riesgo de deslizamientos alta, es decir tiene pendientes mayores a 50° y riesgo medio con pendientes entre 35° y 50°, que podrían afectar la ejecución del proyecto en sus diferentes etapas.

#### 5.1.2.3. Medio Biótico

Las especies arbóreas presentes en el área de estudio son sauce y eucalipto combinadas con especies nativas de los andes complementados por un estrato herbáceo. Cabe mencionar que en el área de estudio no se encontraron especies endémicas ni en peligro de extinción. En cuanto a la fauna presente en el área de influencia podemos mencionar que se identificaron 18 especies de aves, 3 especies de mamíferos, 2 especies de anfibios y una de reptiles.

Cabe mencionar que se realizaron dos estaciones de muestreo de macroinvertebrados para determinar la calidad de agua, en donde se obtuvo que en las dos estaciones las aguas son altamente contaminadas.

#### 5.1.2.4. Medio Socio-económico y cultural

El área total del proyecto alcanza los 550 ha y se desarrollará en la parroquia urbana de Paute, ubicada en la margen izquierda de río que lleva su mismo nombre y se encuentra a una distancia aproximada de 42 km de la ciudad de Cuenca.

De acuerdo con los datos obtenidos del VII Censo de Población y vivienda del año 2010 el área urbana y su periferia del Cantón Paute (cabecera cantonal) tienen una población de 7.226 habitantes, lo que representa el **73,39** % de la población total del cantón.

#### 5.1.3. ÁREAS DE INFLUENCIA

El Área de Influencia se encuentra enmarcada principalmente por los recursos bióticos y abióticos que se encuentran dentro del área del proyecto, además los sectores Pirincay (lugar de la escombrera) y San Ignacio (botadero municipal), los barrios que constituyen la ciudad de Paute y el barrio Tutucán. En la fase de construcción, el Área de Influencia Directa (AID) asciende a 104.64 ha. y el Área de Influencia Indirecta (AII) es de 468.73 ha., mientras que en la fase de Operación y Mantenimiento el AID corresponde a 541,14 ha y el AII a 971,75 ha.

#### 5.1.4. DETERMINACIÓN DE ÁREAS SENSIBLES

El área en donde se pretende emplazar el proyecto de alcantarillado para la ciudad de Paute, según oficio MAE-DPACMS-2011-0815 otorgado por el Ministerio del Ambiente no intercepta con el Sistema Nacional de Áreas Protegidas, Bosques y Vegetación Protectores y Patrimonio Forestal del Estado y además son zonas bastante intervenidas ya que son áreas urbanas, por éstas razones podemos mencionar que el proyecto no afecta a Áreas Ambientalmente Sensibles.

#### 5.1.5. EVALUACIÓN DE IMPACTOS AMBIENTALES

Para el proyecto de ampliación y mejoramiento del alcantarillado de la ciudad de Paute se han identificado 270 impactos negativos, de los cuales 229 corresponden a la fase de construcción y 41 a la fase operación y mantenimiento. De la misma manera se han identificado 109 impactos positivos, de los cuales 72 corresponden a la fase de construcción y 37 a la fase operación y mantenimiento.

#### *5.1.5.1. Viabilidad del proyecto de alcantarillado*

El proyecto de ampliación y mejoramiento del sistema de alcantarillado para la ciudad de Paute es ambientalmente viable para su ejecución, ya que éste tipo de proyectos al ser realizados en zonas urbanas bastante intervenidas, no generarán impactos ambientales negativos altamente significativos, sino simplemente impactos ambientales de significancia media y baja, que mediante la aplicación de medidas de prevención, control y mitigación apropiadas podrán ser minimizados o eliminados.

#### **5.1.6. PLAN DE MANEJO AMBIENTAL**

#### 5.1.6.1. ESTRUCTURA DEL PLAN DE MANEJO AMBIENTAL

El Plan de Manejo Ambiental está estructurado de la siguiente manera:

#### FASE DE CONSTRUCCIÓN

| Programa                                              |         | Nombre de la Medida                                  | Procedimientos                                                                                          |  |  |  |
|-------------------------------------------------------|---------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--|--|--|
| Programa de<br>Prevención,<br>Control y<br>Mitigación |         | Prevención y control del ruido                       | Realizar mantenimientos continuos de maquinaria y equipos                                               |  |  |  |
|                                                       | de<br>y | Prevención y control de la contaminación atmosférica | * Realizar mantenimientos continuos de maquinaria y equipos<br>* Aspersión hídrica en épocas de sequía. |  |  |  |
|                                                       |         | Manejo de combustibles                               | * Almacenamiento adecuado de combustibles y aceites                                                     |  |  |  |

| Programa                                                                    | Nombre de la Medida                                            | Procedimientos                                                                                                                                                                                                                                                                              |  |  |
|-----------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                             |                                                                | * Limpieza de derrames ocurridos                                                                                                                                                                                                                                                            |  |  |
|                                                                             | Manejo de obras de concreto y materiales de construcción       | <ul> <li>* Protección del área de preparación de hormigones.</li> <li>* Manejo de arenas, triturados y otros materiales de construcción.</li> </ul>                                                                                                                                         |  |  |
|                                                                             | Protección de Flora y Fauna                                    | * Proteger la flora y fauna del lugar durante las actividades de desbroce y limpieza.     * Planificación adecuada para realizar las labores de desbroce.      * Colocación de entibados para dar estabilidad al terreno.     * Colocación de plástico para prevenir la erosión de terreno. |  |  |
|                                                                             | Prevención de la erosión e inestabilidad del suelo             |                                                                                                                                                                                                                                                                                             |  |  |
| Programa de<br>Salud y<br>Seguridad                                         | Salud y Seguridad en los frentes de trabajo                    | * Afiliación de los trabajadores al seguro social IESS. * Suministro de implementos al personal de la obra * Señalización del área del proyecto * Colocación de pasos peatonales y tapas provisionales.                                                                                     |  |  |
| Programa de<br>Manejo de                                                    | Gestión de Residuos Sólidos                                    | * Caracterizar los residuos asimilables a domiciliarios en recipientes adecuados * Disponer adecuadamente los escombros generados en la obra                                                                                                                                                |  |  |
| Salud y Seguridad  Programa de Manejo de Residuos  Programa de Capacitación | Gestión de Residuos Líquidos                                   | * Instalaciones de letrinas móviles en los frentes<br>de trabajo                                                                                                                                                                                                                            |  |  |
| Programa de<br>Capacitación                                                 | Capacitación y Educación<br>Ambiental                          | Capacitación sobre riesgos laborales, Seguridad y Medio Ambiente y Uso de implementos y Equipo de Protección Personal                                                                                                                                                                       |  |  |
| Programa de<br>Relaciones<br>Comunitarias                                   | Socialización del proyecto de Alcantarillado                   | Ejecución de talleres informativos<br>Comunicación de paralización de servicios                                                                                                                                                                                                             |  |  |
| Programa de<br>Restauración de<br>Área Degradas                             | Recuperación de áreas afectadas                                | Retiro de suelos contaminados y remoción de suelos compactados Siembra de árboles                                                                                                                                                                                                           |  |  |
| Programa de abandono y cierre de áreas de trabajo                           | Retiro de instalaciones<br>temporales, equipos y<br>materiales | Retiro de instalaciones, maquinaria y equipo de los campamentos.                                                                                                                                                                                                                            |  |  |
| Programa de<br>Monitoreo                                                    | Monitoreo                                                      | Inspecciones de campo para verificar el grado de cumplimiento                                                                                                                                                                                                                               |  |  |
| Programa de Contingencias                                                   | Contingencias                                                  | Medidas para actuar en caso de contingencias                                                                                                                                                                                                                                                |  |  |

### • FASE DE OPERACIÓN Y MANTENIMIENTO

| Programa                               |          | Nombre de la Medida                         | Procedimientos                                                                                                                                 |  |  |
|----------------------------------------|----------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Programa<br>Salud<br>Seguridad         | de<br>y  | Salud y Seguridad<br>Ocupacional            | <ul> <li>* Suministro de implementos al personal de la obra.</li> <li>* Señalización del área del proyecto</li> </ul>                          |  |  |
| Programa<br>Manejo<br>Residuos         | de<br>de | Gestión de Residuos                         | * Recolección de los residuos asimilables a domiciliarios en recipientes adecuados * Disponer adecuadamente los escombros generados en la obra |  |  |
| Programa<br>Relaciones<br>Comunitarias | de       | Mantener buenas relaciones con la comunidad | * Comunicación de paralización de servicios                                                                                                    |  |  |
| Programa<br>Monitoreo                  | de       | Monitoreo                                   | * Monitoreo de la Calidad de Agua                                                                                                              |  |  |

#### **CAPITULO 6**

#### 6. CONCLUSIONES Y RECOMENDACIONES

#### 6.1. CONCLUSIONES

- El actual sistema de alcantarillado de la ciudad de Paute se encuentra depositando sus aguas a cuerpos receptores sin un previo tratamiento y sin ningún sistema de transporte que en este caso sería el interceptor a ser diseñado.
- Para el diseño hidráulico de los tramos del interceptor, se calculó las relaciones hidráulicas para tuberías con sección parcialmente llena. Las tuberías y colectores se diseñaran para trabajar a flujo libre por gravedad.
- El diseño de este interceptor esta proyectado de manera que siga la pendiente natural del terreno aproximándose lo máximo al drenaje que naturalmente tendría, minimizando los problemas ecológicos ambientales debido a la presencia del hombre en la naturaleza.
- Notar que en el "Análisis poblacional", se determina la población de diseño basándonos en varios aspectos como: análisis estadístico (censos), normativas emitidas para la ocupación de los lotes en la urbanización, análisis de la población de saturación, de lo cual se puede concluir que se realizó un análisis exhaustivo y a la vez se utilizo el programa llamado SPECTRUM para llegar a la verdadera población futura de este proyecto.

• Resaltar la colaboración brindada por el Departamento de Agua Potable
Y alcantarillado del Gobierno local del Cantón Paute el cual nos facilito todos los
equipos e información necesaria así como la ayuda humana para realizar este proyecto.

#### 6.2. RECOMENDACIONES

- Realizar un mantenimiento programado en lo referente a pozos de revisión, limpieza de sumideros, de tramos de tuberías de bajas pendientes y de las descargas al río Paute.
- Difundir de manera práctica y con medios sencillos el tratamiento que están realizando al agua actualmente con el fin de que la población confíe plenamente en la calidad y la consideren apta para el consumo humano.
- Crear espacios de participación ciudadana promovidos por el gobierno municipal para socializar el proyecto con diferentes grupos sociales, en donde se sientan incluidos e integrados en la toma de decisiones.
- Explicar que la red de drenaje, significa un cambio importante en el nivel de vida de los moradores, ya que inmediatamente se eliminaran focos de contaminación, debido a las aguas estancadas, las aguas lluvias se pueden recolectar y conducir a dicha zona para su eliminación.
- Recomendar que se realice el mantenimiento de las redes de alcantarillado tal y como se indica en el manual de operación y mantenimiento que tiene el Gobierno Local de Paute.
- Realizar las acometidas domiciliarias para el alcantarillado Sanitario y pluvial, para evitar que los usuarios realicen conexiones ilícitas de aguas lluvias al

sistema de alcantarillado sanitario y viceversa, con esto se garantiza que no exista contaminación del suelo, posibles filtraciones y mal funcionamiento de las redes.

- Cumplir en la etapa de construcción con las especificaciones técnicas y recomendaciones de los fabricantes, así garantizamos su óptimo funcionamiento.
- Establecer un pago justo por el nuevo servicio el mismo que será pagado por la ciudadanía.

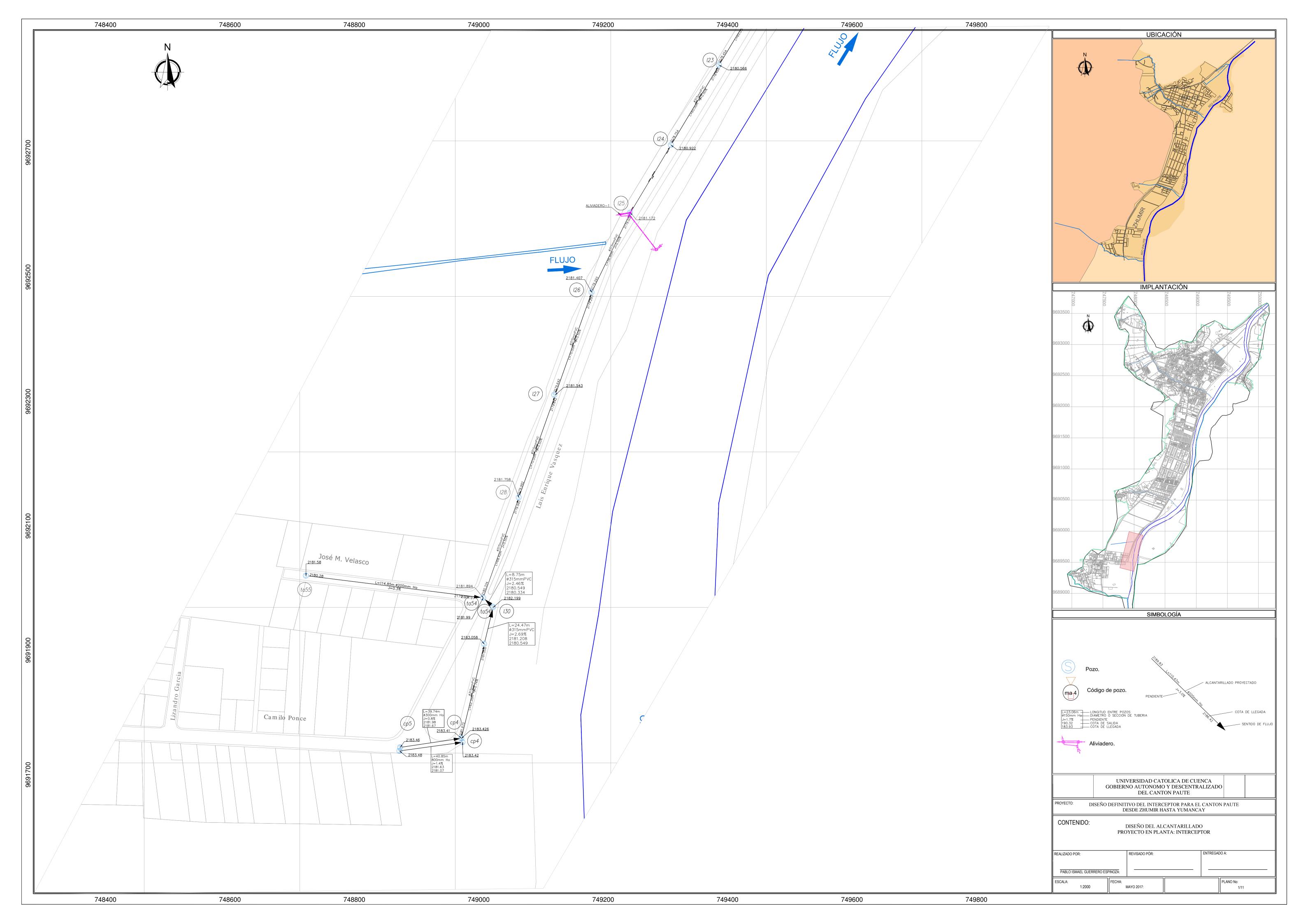
#### **BIBLIOGRAFÍA**

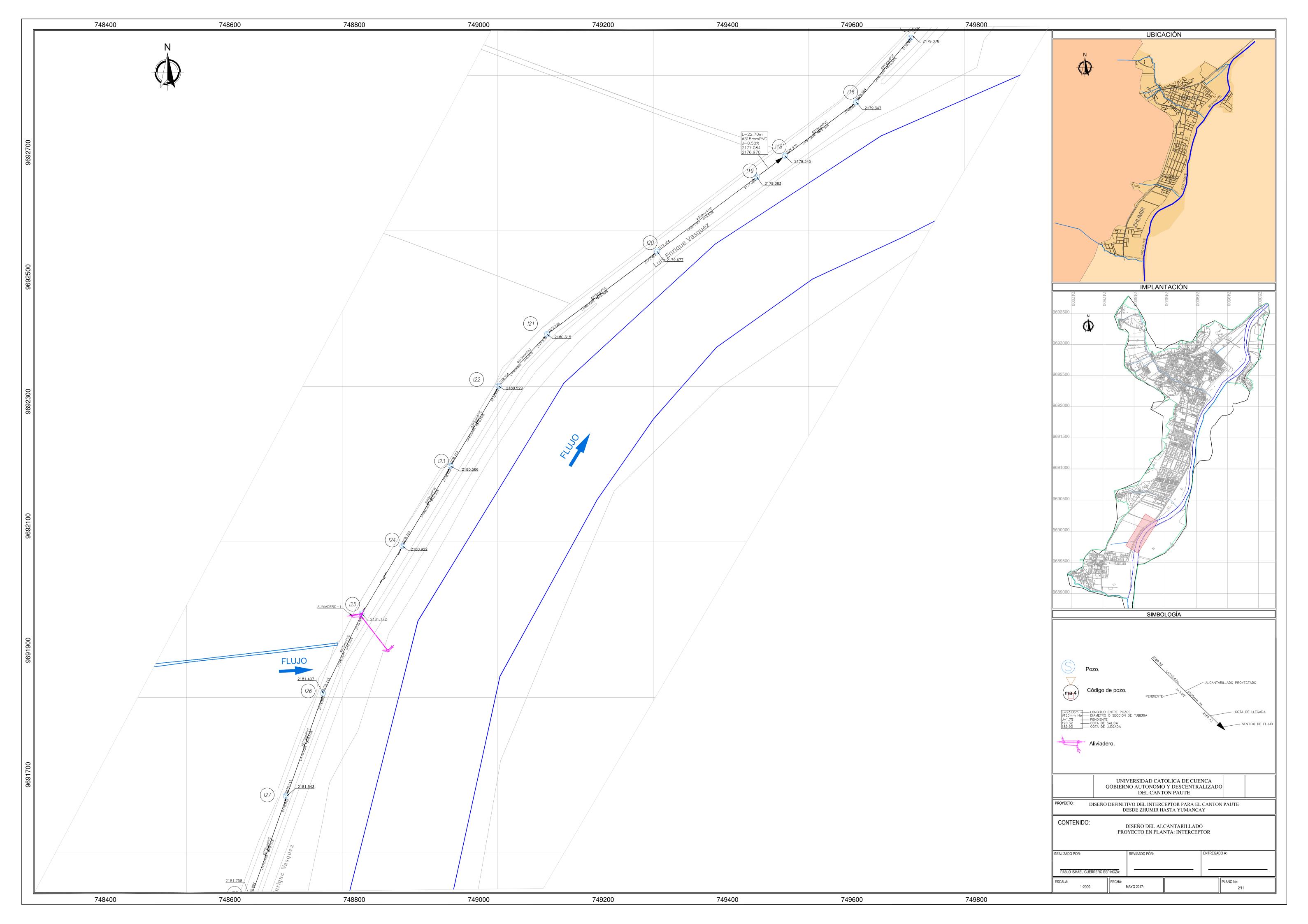
- López Cualla Ricardo Alfredo. (2007). Elementos de diseño para acueductos y alcantarillados. 2da ed. EDITORIAL ESCUELA COLOMBIANA DE INGENIERÍA.
- McGhee, Terence J., "Abastecimiento de agua y alcantarillado", 6ta
   Edición.
- Collado Lara Ramón. 1992. Depuración de aguas residuales en pequeñas comunidades. COLEGIO DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. Madrid - España.
- Metcalf & Eddy, Inc. 1995. Ingeniería de aguas residuales tratamiento, vertido y reutilización. 3era ed. Volumen I. Mc GRAW HILL. Madrid – España.
- Romero Rojas Jairo Alberto. 2000. Tratamiento de aguas residuales, teoría y principios de diseño. 1era ed. EDITORIAL ESCUELA COLOMBIANA DE INGENIERÍA.
- Rocha, Simón, "Sistemas de recolección de aguas corridas y lluvias".
- Instituto ecuatoriano de normalización INEN. (1992). Código ecuatoriano de la construcción. Diseño de Instalaciones Sanitarias.
   Primera edición.
- Organización Panamericana de la Salud. (2005).Guías para el diseño de tecnologías de Alcantarillado. Lima, Perú:

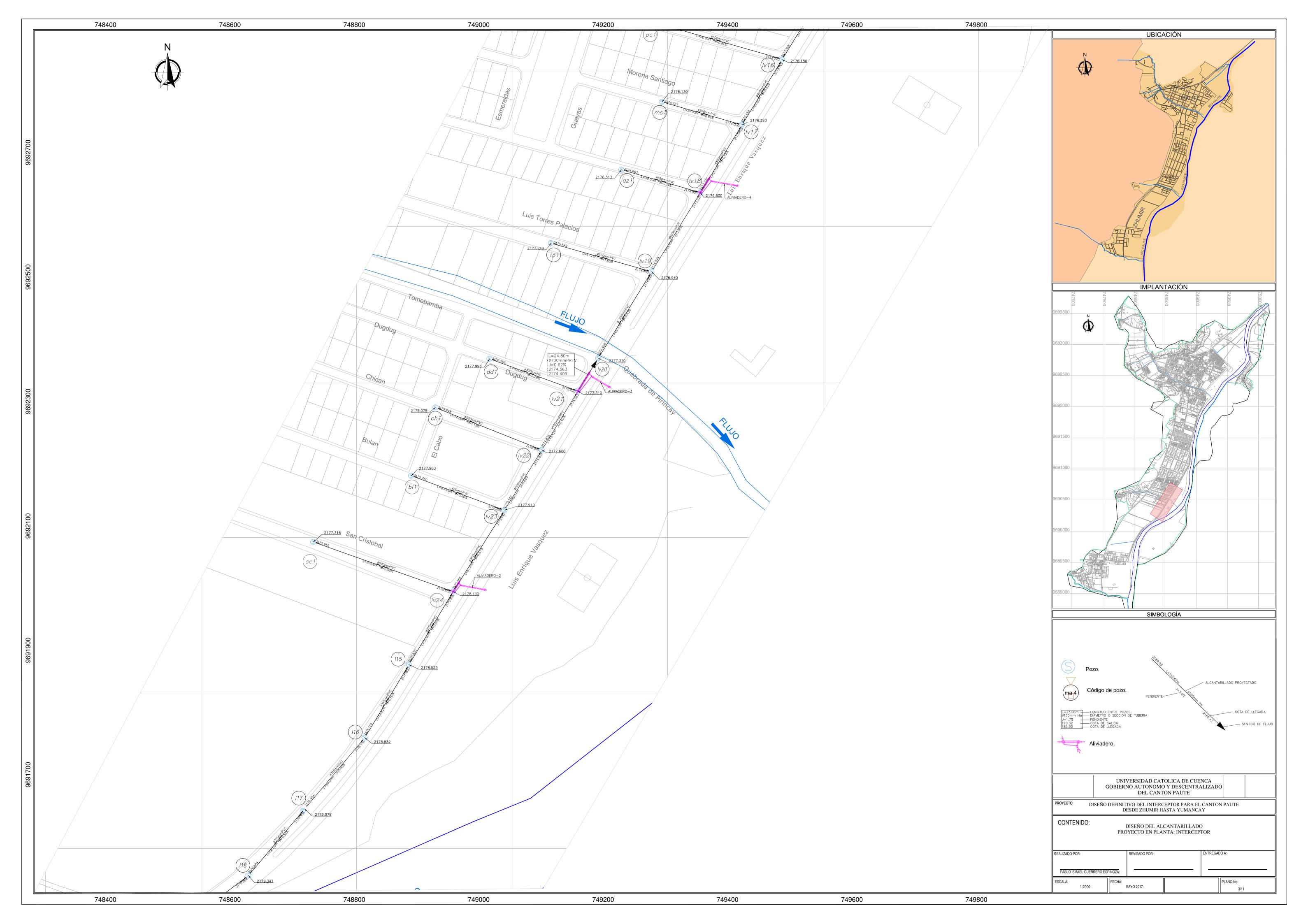
- Organización Panamericana de la Salud. (2005). Guías para el diseño de Tanques Imnhoff y Lagunas de Estabilización. Lima, Perú:
- El Libro VI de Calidad Ambiental del Texto Unificado de Legislación Ambiental Secundaria (TULAS).
- Hernández M. Aurelio, Hernández L. Aurelio, Galán M. Pedro. 2004.
   Manual de depuración Uralita: Sistemas de depuración de aguas residuales en núcleos de hasta 20.000 habitantes. 3era edición. Madrid: Paraninfo.
- Chow, V. (1994). Hidráulica de Canales Abiertos. Obtenido de http://fluidos.eia.edu.co/hidráulica/articuloses/flujocanales/manning/man ning.html
- INEC. (2010). Censo de Población y Vivienda. Azuay-Paute.
- Arrocha Simon. (2005). Diseño de Redes de Alcantarillado (Diseño de Acueductos)

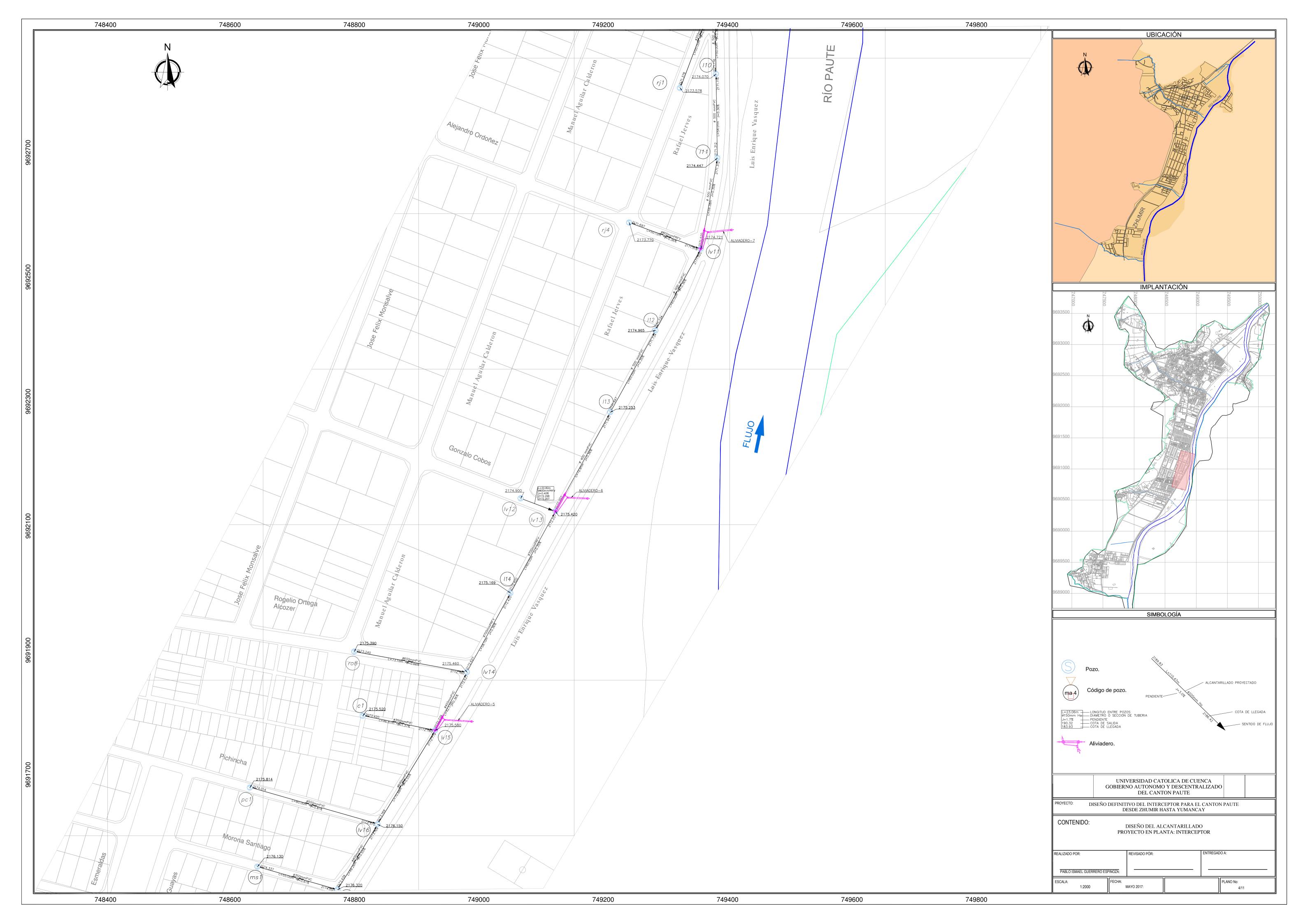
#### **ANEXOS**

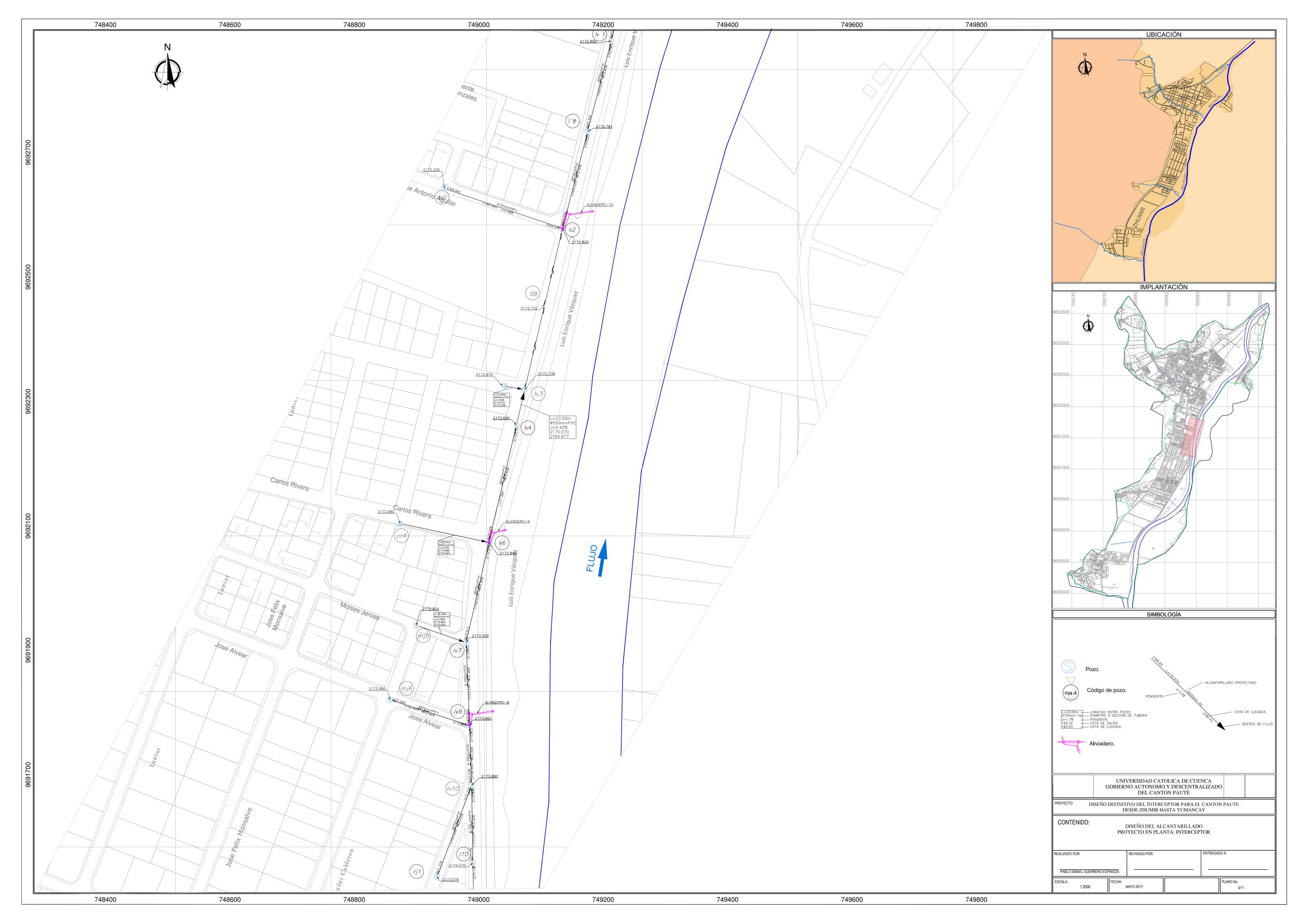
- a) ESTUDIO DE SUELOS.
- b) ALCANTARILLADO DE PAUTE.
- c) DISEÑO, PLANOS Y CÁLCULO DEL INTERCEPTOR Y LOS ALIVIADEROS.

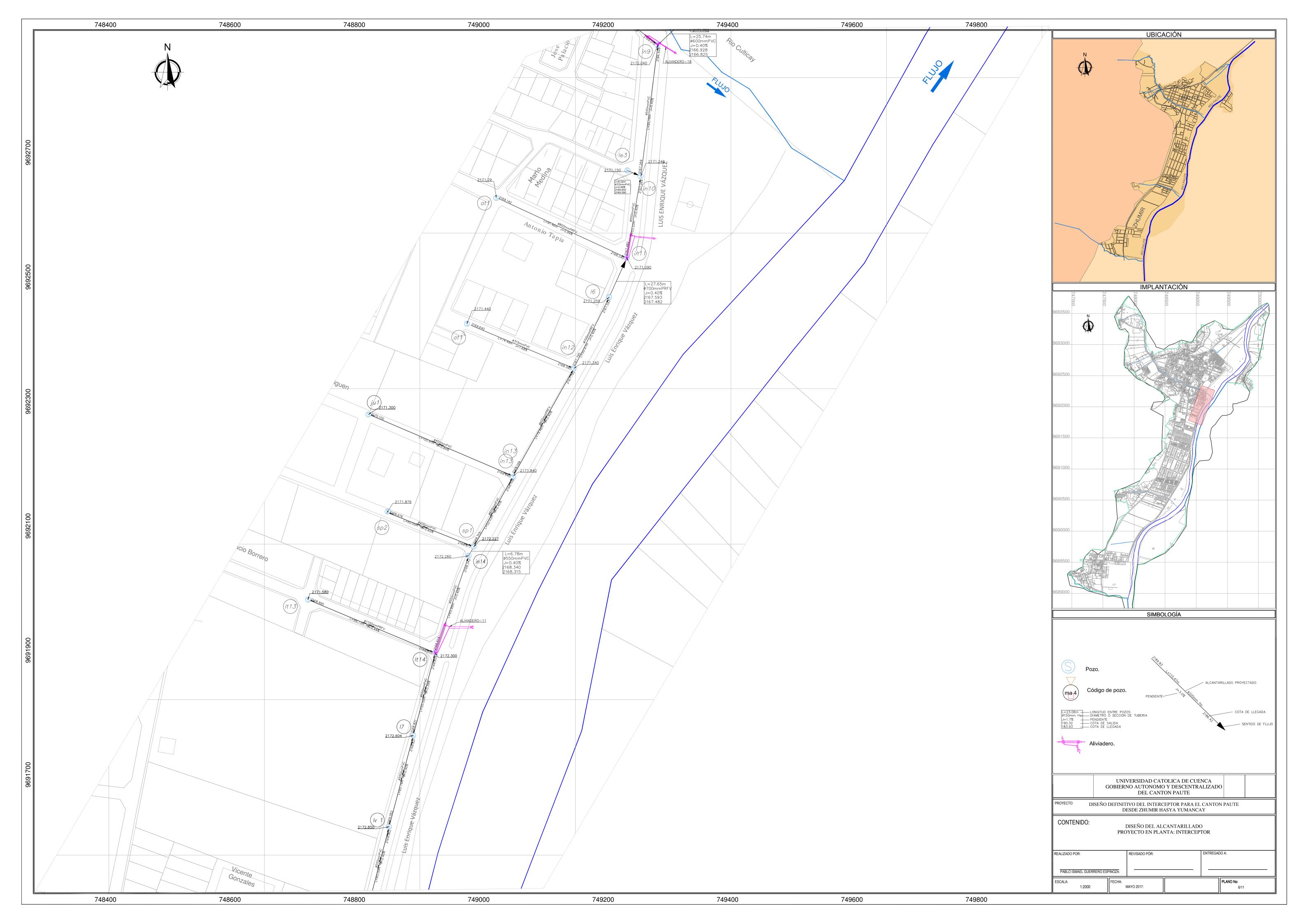

## ESTUDIO DE SUELOS.

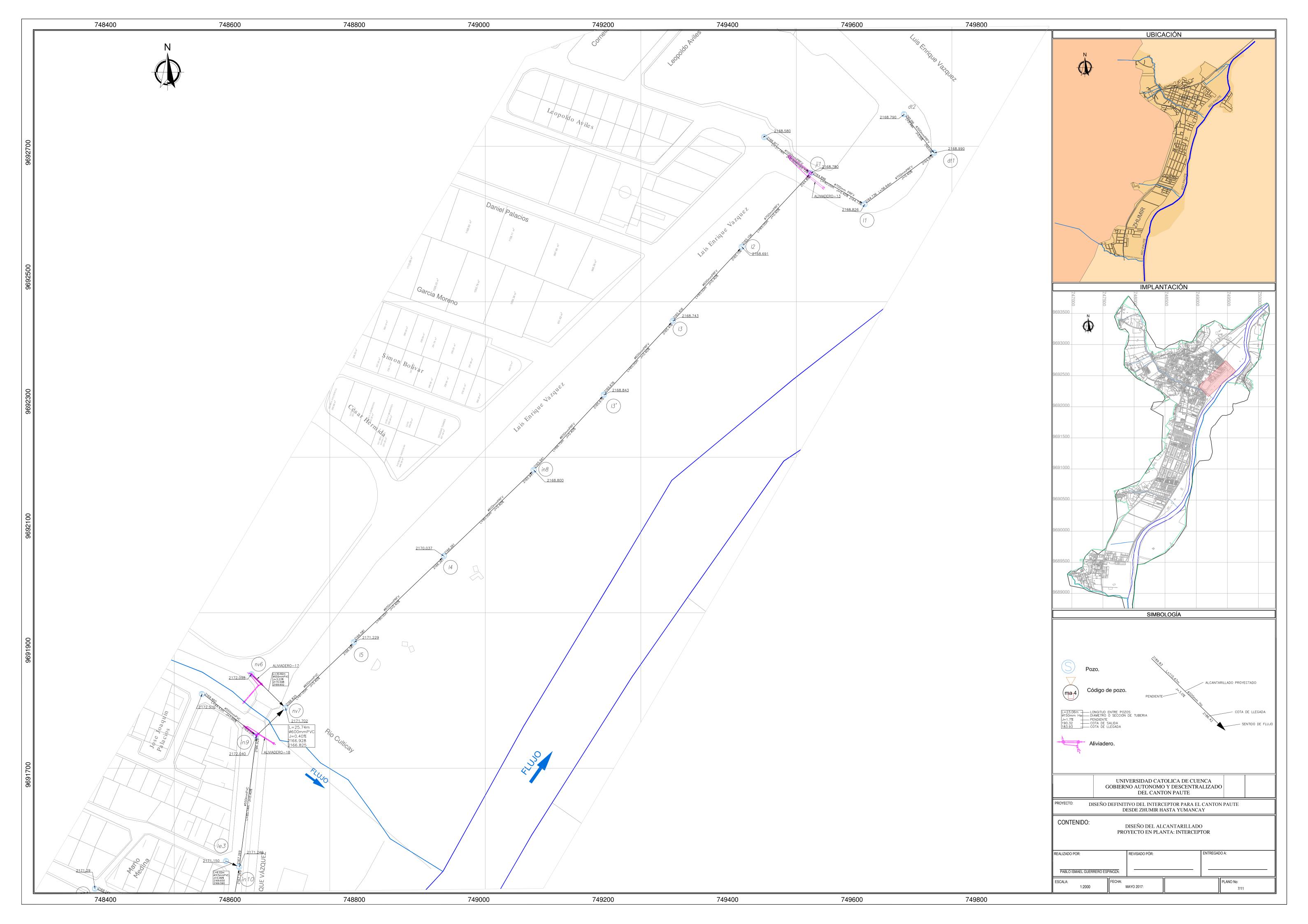

## ALCANTARILLADO DE PAUTE.

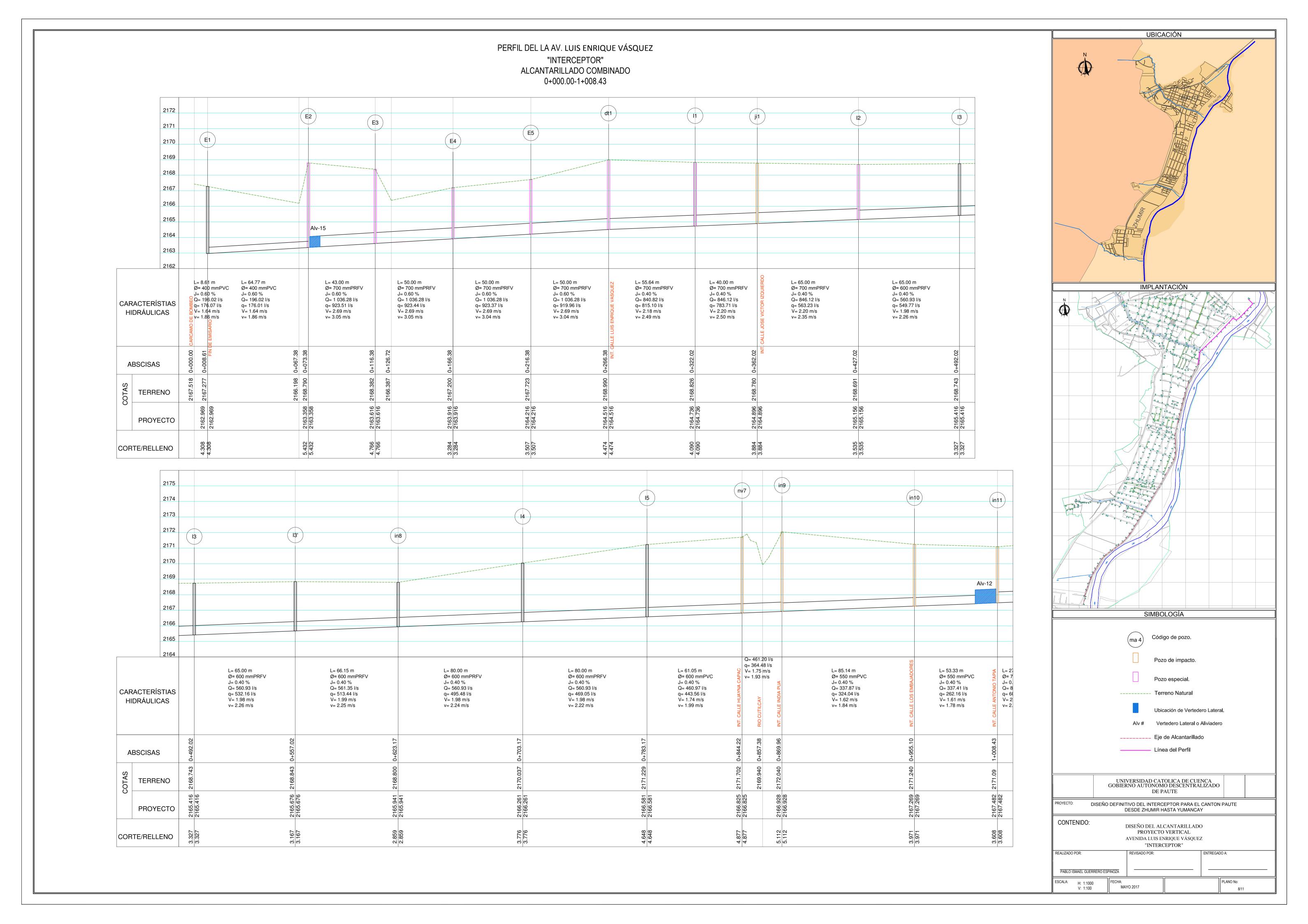

# DISEÑO, PLANOS Y CÁLCULO DEL INTERCEPTOR Y LOS ALIVIADEROS.

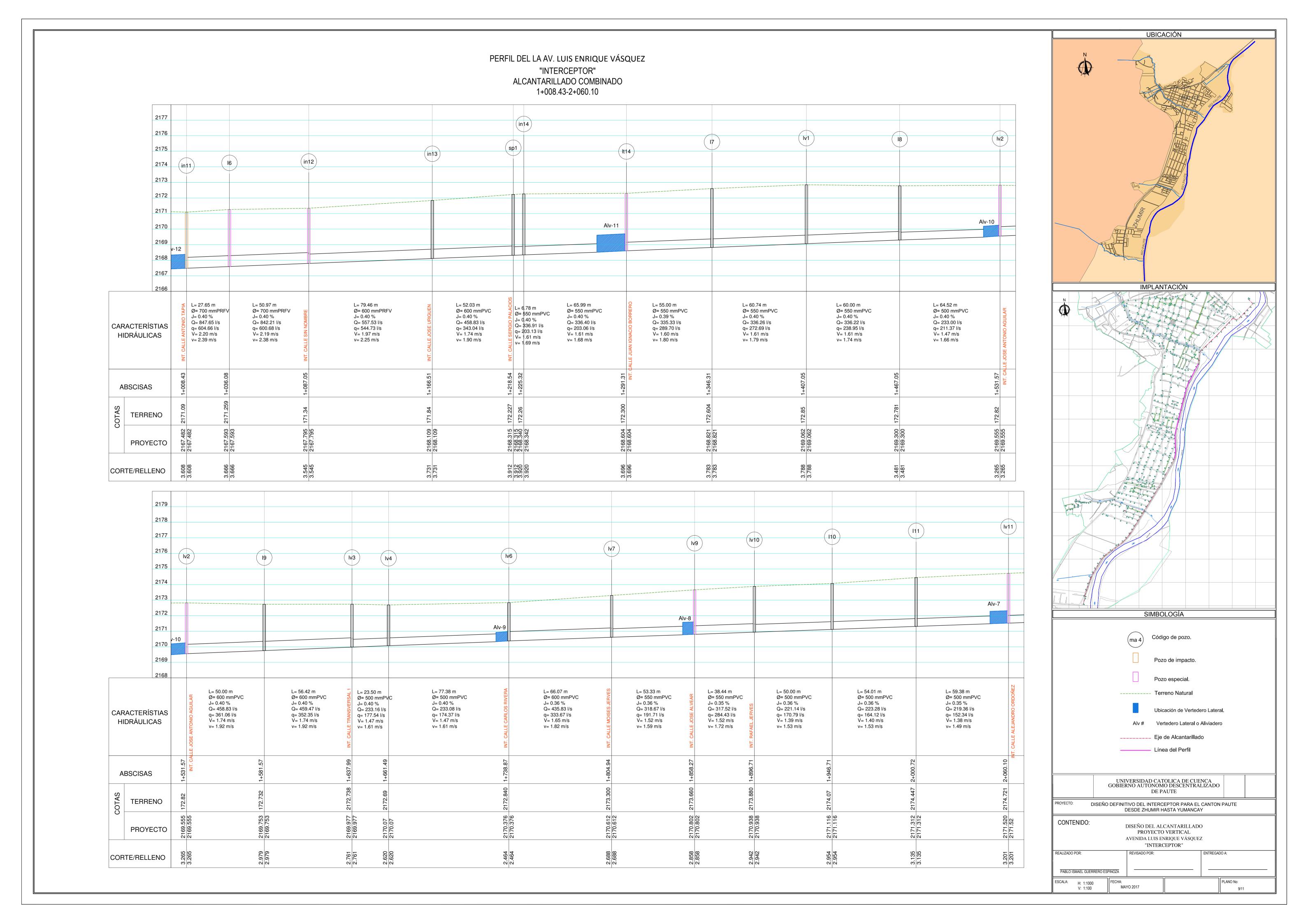

| CALLE COLUMN AGUAS LLOVIAS  Percel Acumulado DENS. Proble Acumulado DENS. Percel Acumulado  | National Arthogonal Age-Cyfe         Description         Description         Age-Cyfe         Description         Description | CALDAL Good Odesto Datros DE LA TUBERRA SI  NELTRACION G1+O <sub>ret</sub> G1sorico G1sorico G1sorico Serie Miterial Reposted J V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | COORLINA TRIMPO METICALLE TRANSCRIPTOR TRANS |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| cp4 (31 62,35 0,258 0,258 29,00 641 641 12,00 0,60 0,15 0,15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.00 239.79 37.12 37.12 1.697 1.697 4.00 6.790 6.790                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Parcial Aum   Name   T   T   T   T   T   T   T   T   T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8 82,70 1,02 0,538 1,019 3,228 5,13 0 0,059 1,79 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 183,05 18 |
| 131   130   24,47   0,044   0,302   39,00   2   643   13,01   0,60   0,03   0,18   130   1254   8,75   0,008   0,310   39,00   1   644   13,16   0,60   0,00   0,19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3,00 231,48 6,11 43,23 0,005 1,703 4,00 6,811 6,811<br>3,00 230,30 1,11 44,34 0,003 1,705 4,00 6,822 6,822                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 155,76 0,15 0,221 0,891 2,700 15,30 0 0,057 1,850 1,650 183,058 182,199 36,9309358 181,208 180,549 1 148,79 0,06 0,046 0,508 1,578 6,07 0 0,025 1,650 1,560 182,199 181,804 34,5714286 180,549 180,334                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1854 228 68,42 1,317 1,627 14,72 189 833 13,22 0,60 0,79 0,98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3,00 229,86 181,64 225,97 0,501 2,205 4,00 8,824 8,824 3,00 272,53 230,44 8,624 0,009 2,725 4,00 9,009 9,009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0,068 0,164 8,99 8,99 84,79 315 B 270 6 PVC 0,010 5,00 1,17<br>0,000 0,234 9,33 9,33 86,00 315 B 270 6 PVC 0,010 5,00 1,17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7 67,11 0,97 0,134 0,699 2,066 1,98 0 1,560 1,766 181,994 181,758 4,99838644 180,134 179,992 7 67,12 1,00 0,139 0,707 2,086 2,02 0 1,766 1,500 181,758 1,81,541 5 1,79,992 179,642                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 128 127 (2000 1,729 3,553 15,72 29 899 15,19 0,60 1,79 2,01 127 125 75,00 1,79 2,01 127 127 125 75,00 1,79 2,01 127 127 125 75,00 1,79 2,01 127 127 125 75,00 1,79 2,01 127 127 125 75,00 1,79 2,01 127 127 127 127 127 127 127 127 127 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3,00 215,47 340,02 796,43 0,103 2,378 4,00 9,512 9,512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,070 0,254 9,55 9,62 87,58 215 8 270 6 PVC 0,010 5,00 1,5<br>0,070 0,304 9,82 9,82 87,58 215 8 270 6 PVC 0,010 4,98 1,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7 66,98 1,00 0,547 0,718 2,115 2,06 © 1,901 2,114 181,543 181,407 4,98 179,642 179,293                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 126   125   56,90   2,785   8,768   14,72   41   939   16,19   0,60   1,67   5,26   125   124   50,75   1,711   12,479   14,72   55   994   16,59   0,60   2,23   7,49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3,00 208,85 348,99 1.345,42 0,109 2,487 4,00 9,946 9,946<br>3,00 203,78 453,73 1.599,15 0,346 2,632 4,00 10,529 10,529                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,057 0,361 10,31 10,31 89,29 315 8 270 6 PVC 0,010 5,01 1,17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7 67,58 0,51 0,513 0,756 2,172 2,08 0 2,154 2,166 181,607 181,772 5,0087975 179,208 179,008 7 67,55 0,72 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 124 23 60,00 2,123 16,802 14,72 35 1039 17,71 0,60 1,79 8,88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3,00 199,45 278,00 1.877,15 0,091 2,725 4,00 10,900 10,900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,060 0,472 11,37 11,37 92,61 315 B 270 6 PVC 0,010 5,00 1,17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7 67,12 0,85 0,169 0,745 2,227 2,17 60 2,168 2,112 180,922 180,566 5 178,754 178,454                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 123 122 00,00 2,188 10,990 14,72 32 1001 18,57 0,00 1,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10, | 3,00 194,57 249,59 2.126,74 0,085 2,810 4,00 11,239 11,239<br>1,00 189,92 259,70 2.385,64 0,090 2,900 4,00 11,599 11,599                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,060 0,532 11,77 11,77 93,92 415 8 270 6 PVC 0,010 5,00 1,1:<br>0,046 0,577 12,18 12,18 94,99 315 8 270 6 PVC 0,010 4,99 1,1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7 6706 0.65 0.02 0.700 2.306 2.21 0 2.325 2.300 100.520 100.315 4.0013433 170.154 127.026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| [21   120   88,42   1,826   22,945   14,72   27   1122   20,07   0,60   1,10   12,63   120   129   80,00   2,899   22,594   14,72   41   1165   21,33   0,60   1,74   14,37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3,00 186,53 204,36 2.590,80 0,072 2,971 4,00 11,885 11,885<br>3,00 180,29 313,60 2,904,40 0,114 3,085 4,00 12,340 12,340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,088 0,666 12,55 12,55 96,10 315 8 270 6 PVC 0,010 5,00 1,17<br>0,080 0,746 11,09 11,09 97,62 315 8 270 6 PVC 0,010 5,00 1,17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7 67,11 1,26 0,187 0,766 2,287 2,28 0 2,289 2,199 180,115 179,077 4,99888503 177,026 177,484 7 67,12 1,14 0,195 0,776 2,114 2,11 0 2,193 2,279 179,677 179,163 5 177,484 177,084                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 119 118 22,70 2,000 26,844 16,72 41 1208 22,47 0,60 1,74 16,11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3,00 175,00 304,50 3,206,90 0,114 3,199 4,00 12,796 12,796<br>3,00 173,56 0,94 3,209,84 0,003 3,202 4,00 12,806 12,806                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,023 0,768 13,56 13,56 99,03 315 8 270 6 PVC 0,010 5,02 1,11<br>0,057 0,826 13,63 13,63 99,10 315 8 270 6 PVC 0,010 4,99 1,11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7 67,27 0,32 0,20 0,783 2,316 2,315 0 2,279 2,375 176,363 179,345 5,02202643 177,084 176,970 7 67,06 0,82 0,203 0,785 2,342 2,34 0 2,375 2,663 179,345 179,347 4,991274 176,970 175,684                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 118 127 56,00 2,265 320,000 24,000 3 3,472 A 2200 24,77 0,000 3,75 17,66 118 127 56,00 2,265 320,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3 | 3,00 170,01 229,01 3.438,85 0,090 3,292 4,00 13,167 13,167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,056 0,882 14,05 14,05 100,26 315 B 270 6 PVC 0,010 5,00 1,11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7 67,12 0,80 0,209 0,791 2,362 2,38 0 2,661 2,674 179,078 5 176,684 175,404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 117 115 60,00 2,279 31,477 14,72 35 1279 24,40 0,60 1,43 18,89 116 115 54,82 2,698 34,175 14,72 40 1319 25,25 0,60 1,62 20,51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3,00 166,69 237,93 3.676,78 0,095 3,387 4,00 13,548 13,548 13,00 163,27 264,30 3.941,07 0,106 3,493 4,00 13,972 13,972                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,060 0,942 14,49 14,49 101,43 315 B 270 6 PVC 0,010 5,00 1,17<br>0,055 0,997 14,97 14,97 102,66 315 B 270 6 PVC 0,010 5,00 1,17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7 67,12 0,85 0,216 0,798 2,383 2,41 0 2,074 2,728 179,078 178,832 5 176,404 175,104 7 67,11 0,78 0,223 0,805 2,407 2,44 0 2,728 2,693 178,832 178,532 4,98127585 176,104 175,830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 115 h24 55,00 0,100 14,285 14,72 2 1321 26,03 0,60 0,07 20,57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3,00 160,26 10,58 10,58 0,005 3,498 4,00 13,993 13,993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,055 1,052 15,04 24,57 123,64 315 B 270 6 PVC 0,010 5,00 1,11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7 67,22 0,78 0,366 0,922 2,819 2,99 © 2,091 2,575 178,522 178,130 5 178,880 175,555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| N2 N2 S2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,00 157,36 96,83 96,83 0,169 3,668 4,00 14,671 14,671                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,002 1,113 98,92 111,50 230,14 350 B 340 6 PVC 0,010 6,67 1,51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 140,0 0,00 0,00 0,00 1,10 1,00 1,00 0 1,00 0 1,00 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1,00 0 1 |
| Mil   M23   63,69   0,259   0,787   72,59   19   55   12,67   0,60   0,16   0,47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,00 234,25 36,40 112,11 0,050 0,146 4,00 0,583 2,200<br>1,00 155,01 120,02 216,85 0,183 1,850 4,00 15,402 15,402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,064 0,124 2,32 134,31 241,82 350 8 340 6 PVC 0,010 8,64 1,80 0,046 1,159 16,56 232,25 302,82 500 8 450 6 PVC 0,010 6,65 1,90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 163,15 0,59 0,701 1,682 3,618 8,26 0 2,700 177,900 177,910 8,64 175,710 175,210 1 302,23 0,40 0,768 1,102 3,788 8,55 0 2,788 2,821 177,900 177,650 6,96111126 175,142 174,839                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ch1 1922 74,00 0,281 1,582 75,67 21 291 14,30 0,50 0,17 1,19 122 154 44,42 0,000 34,595 78,67 317 159 27,87 0,50 0,05 30.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3,00 221,75 37,39 508,56 0,061 0,771 4,00 3,082 3,082 3,00 151,61 515,92 723,84 0,892 4,743 3,30 15,644 15,644                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,074 0,418 3,50 511,64 449,94 500 8 516 6 PVC 0,010 11,32 2,73<br>0,044 1,203 16,85 248,48 446,78 200 200 200 200 200 0,000 6,21 2,23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 556,03 0,65 0,90 1,33 4,55 17,61 0 2,230 2,650 176,078 177,660 11,32 175,668 175,010 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 641 h/21 60,000 0,227 0,768 79,67 19 63 14,89 0,60 0,14 0,46 h/21 h/20 24,80 0,000 34,645 79,67 76 1867 28,14 0,60 0,03 22,79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,00 217,54 29,63 101,81 0,050 0,167 4,00 0,667 2,200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 000 0170 2.37 10401 311.15 200 300 HS 0013 22.25 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| h20 h29 65,33 0,190 24,835 79,67 16 1883 28,29 0,60 0,11 20,90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3,00 152,16 74,04 74,04 0,042 4,986 3,29 16,388 16,388                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,065 1,294 74,37 90,42 205,24 350 B 340 6 PVC 0,010 5,51 1,44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4 130,29 0,76 0,694 1,080 3,602 5,25 © 2,901 2,891 177,310 176,940 5,51 174,409 174,049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| tp1   h/19   67,20   0,373   8,681   79,67   30   359   16,09   0,60   0,22   5,21   1,459   h/18   59,80   0,128   34,973   79,67   408   2291   29,05   0,60   0,08   20,98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3,00         209,47         46,88         402,59         0,079         0,927         4,00         3,707         3,707           3,00         149,61         419,41         493,44         1,080         6,067         3,24         19,654         19,654                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.067 1.062 4.77 406.29 442.88 500 B 450 6 PVC 0.010 165 2.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9 476.09 0.37 0.851 1.323 4.011 22.10 0 1.709 2.500 177.249 176.040 16.5 175.549 174.440 17.770 0.919 0.49 0.49 0.49 1.119 4.111 9.70 0 2.919 2.800 175.040 175.070 176.00 5.509.57234 174.040 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770 17.770  |
| arl N/8 49,50 0,174 2,254 79,27 34 231 14,25 0,60 0,10 1,35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,00 222,11 23,19 557,39 0,007 0,612 4,00 2,447 2,447<br>1,00 148,01 61,22 61,22 0,718 6,785 1,21 21,799 21,799                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0,050 0,384 2,84 559,84 440,27 550 B 556 5 PVC 0,010 13,39 2,00<br>0,051 1,404 74,65 83,02 198,70 350 B 340 6 PVC 0,010 5,50 1,41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5 637,70 0.28 0.996 1,133 4,168 20,85 0 1,650 2,660 176,113 176,660 11,29 114,663 134,000 1 10,15 0,50 0,618 1,061 1,465 5,11 0 2,880 2,881 176,600 176,120 5,4992113 173,720 173,019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| mal hd7 55.00 0.259 0.548 78.88 21 44 12.50 0.60 0.16 0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00 232.42 36.12 77.70 0.056 0.117 4.00 0.466 2.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.055 0.111 2.31 79.90 199.89 350 B 340 6 PVC 0.010 6.13 1.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 137.42 0.61 0.581 1.08 1.330 5.51 0 1.791 2.320 176.120 6.11 174.337 124.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3,00 146,13 86,64 147,86 0,156 6,941 3,21 22,264 22,264<br>3,00 236,19 151,35 172,21 0,159 0,183 4,00 0,731 2,200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,049 1,454 23,72 170,13 259,88 400 B 290 6 PVC 0,010 5,48 1,51 0,232 0,272 2,47 174,41 267,69 400 400 PREV 0,009 7,54 2,68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7 187,75 0,52 0,008 1,134 4,174 6,45 0 2,881 2,081 176,120 176,120 5,68112058 177,419 177,109 8 261,21 1,86 0,668 1,071 3,537 8,36 0 0,000 1,000 2,400 176,000 176,150 7,54 175,500 173,760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| hds hds 70,88 0,880 35,365 78,88 120 2741 30,65 0,60 0,11 21,22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3,00 144,51 271,41 419,27 0,318 7,259 3,20 23,207 23,207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,071 1,525 24,73 442,48 372,18 600 B 580 5 PVC 0,010 5,50 2,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 545,91 0,58 0,818 1,115 1,917 9,29 0 2,981 2,801 176,150 175,180 5,50225724 173,160 172,779                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 125 No. 2 No | 3,00 142,75 76,75 76,75 0,241 7,500 3,19 23,920 23,920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,043 1,567 91,36 100,67 196,98 400 B 390 6 PVC 0,010 3,57 1,21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7 153_21 0,56 0,666 1,070 3,512 3,66 © 2,000 2,833 175,550 175,460 3,5755893 172,777 172,027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| roll bol4 73,15 0,254 2,601 79,48 21 216 14,42 0,60 0,15 1,61 1954 134 58,10 0,246 15,738 80,00 266 2098 31,79 0,60 0,15 21,44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3,00 220,84 33,66 522,76 0,056 0,572 4,00 2,288 2,288<br>3,00 141,09 544,16 620,90 0,704 8,204 3,17 25,995 25,995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,073 0,423 2,71 525,05 410,14 600 B 580 5 PVC 0,010 6,56 2,24 0,058 1,625 27,62 645,00 380,24 700 700 PRPV 0,000 1,56 2,01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 590,62 0,55 0,889 1,130 4,115 11,44 0 2,159 2,700 175,390 175,460 6,56 173,340 172,700 175,700 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,100 175,1 |
| 114   1413   60,00   0,261   15,999   80,00   21   2119   22,25   0,60   0,16   21,00   1412   1413   22,82   0,144   7,156   69,36   10   511   14,29   0,60   0,09   4,41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3,00 139,74 21,88 642,79 0,056 8,260 3,17 26,158 26,158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,050 1,685 27,94 668,94 184,79 700 700 PRIV 0,000 1,55 2,01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7 797,11 0,48 0,829 1,120 3,974 7,36 0 2,749 3,213 175,169 175,420 3,55 172,420 172,207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 163   163   72,81   0,108   16,107   56,72   502   3731   32,74   0,60   0,12   21,72   113   112   60,00   0,127   36,294   56,72   12   3723   33,70   0,60   0,12   21,84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1300 136,36 107,83 107,83 1,568 9,827 3,13 10,729 30,729 3,000 136,71 16,04 123,87 0,002 9,859 3,13 10,821 30,821                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,073 1,758 123,88 138,56 222,05 400 B 350 6 PVC 0,010 1,57 1,27 0,000 1,818 22,64 154,69 231,16 500 B 450 6 PVC 0,010 3,55 1,36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50         12,056,33         0.56         0.946         1,118         4,299         9,79         0         2,002         1,211         124,000         175,400         3,69         172,208         172,207         172,207         172,207         172,207         172,207         172,207         172,207         172,207         172,207         172,207         172,207         172,207         172,207         172,207         172,207         172,207         172,207         172,207         172,207         172,207         172,207         172,207         172,207         172,207         172,207         172,207         172,207         172,207         172,207         172,207         172,207         172,207         172,207         172,207         172,207         172,207         172,207         172,207         172,207         172,207         172,207         172,207         172,207         172,207         172,207         172,207         172,207         172,207         172,207         172,207         172,207         172,207         172,207         172,207         172,207         172,207         172,207         172,207         172,207         172,207         172,207         172,207         172,207         172,207         172,207         172,207         172,207         172,207         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3,00 135,71 16,04 123,87 0,032 9,859 3,13 30,821 30,821<br>3,00 133,79 15,73 139,60 0,032 9,891 3,13 30,913 30,913                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0,000 1,818 32,64 154,69 231,36 500 8 450 6 PVC 0,010 3,55 1,36 0,000 1,878 32,79 170,52 239,97 500 8 450 6 PVC 0,010 3,57 1,36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 220,81 0,72 0,700 1,002 3,618 4,69 0 1,306 3,231 175,251 174,965 3,55 171,947 171,724 2 221,55 0,72 0,770 1,103 1,793 4,64 0 1,221 1,201 174,965 114,713 1,56656627 171,724 171,529                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 194   1921   1922   0,196   2,865   56,72   57   362   14,74   0,60   0,12   1,72   1921   111   111   59,38   0,156   36,746   56,72   421   4156   35,14   0,60   0,09   22,05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3,00 218,50 227,34 912,81 0,151 0,959 4,00 3,815 3,815<br>3,00 131,92 118,21 118,21 1,115 11,006 3,10 34,130 34,130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,000 0,392 4,23 906,65 442,84 800 800 PREV 0,009 4 2,66 0,009 1,937 141,93 152,34 229,26 500 8 450 6 PVC 0,010 3,50 1,31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5 1256,53 0,35 0,759 1,300 1,764 9,22 0 2,073 1,310 173,775 174,627 4 171,657 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677 171,677  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.00 130.11 11.71 129.92 0.034 11.030 3.10 34.198 34.198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.054 1.991 36.19 164.12 237.32 500 B 450 6 PVC 0.010 1.63 1.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 221.26 0.64 0.752 1.093 1.704 4.66 0 1.515 2.664 174.077 174.080 3.525076 175.312 175.115 2.664 174.077 174.080 3.525076 175.312 175.115 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175.318 175 |
| 11 M30 55,00 0,245 0,735 58,72 25 45 18,18 0,60 0,15 0,44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2,00 128,53 6,63 136,55 0,016 11,045 2,10 34,244 34,244 3,00 230,14 33,83 103,66 0,040 0,119 4,00 0,477 2,200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,055 0,147 2,35 205,86 223,48 250 8 340 6 PVC 0,010 6,33 1,54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4 139,65 0,60 0,758 1,099 3,762 6,20 © 2,200 2,850 173,578 173,880 6,33 171,378 173,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 140   149   38,44   0,125   37,007   58,72   59   4210   37,09   0,60   0,08   22,26   148   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   149   1   | 3,00 127,09 113,19 249,74 0,156 11,202 3,10 34,692 34,692<br>3,00 221,60 564,16 1,021,43 0,185 1,405 4,09 5,625 5,625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0,038 2,080 36,77 284,43 290,29 550 8 516 5 PVC 0,010 3,54 1,52 0,056 0,379 6,00 1,077,06 471,82 800 800 PSFV 0,000 4,57 2,51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 317.52 0.42 0.896 1.332 4.38 5.49 0 2.042 2.658 173.890 173.660 1.53794137 170,938 170,932 1.000,000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 |
| h/9 h/7 51,33 0,129 37,236 56,72 611 4841 37,52 0,60 0,08 22,34 mp h/7 36,28 0,091 0,630 56,72 13 64 14,23 0,60 0,05 0,38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3,00 126,09 152,40 152,40 1,618 12,820 3,07 39,313 29,313<br>3,00 222,25 28,54 131,62 0,034 0,169 4,00 0,678 2,200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0,053 2,113 184,09 191,71 250,69 550 B 516 5 PVC 0,010 1,56 1,51 0,016 0,213 2,41 131,82 240,81 490 B 290 6 PVC 0,010 5,9 1,61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 118,67 0,58 0,602 1,047 3,378 4,92 0 2,858 2,688 173,660 173,300 3,56272267 170,600 170,612 194,38 0,37 0,688 1,078 3,588 6,44 0 1,980 2,650 172,824 173,300 5,9 170,864 170,650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| b/7 lv6 66,07 0,130 37,366 58,72 81 4922 38,10 0,60 0,08 22,42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3,00 222,55 28,54 131,62 0,034 0,069 4,00 0,678 2,200<br>3,00 124,74 141,85 293,75 0,215 13,034 3,06 19,922 39,922                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0,066 2,199 42,12 333,67 208,75 600 B 580 5 PVC 0,010 3,57 1,61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 194.m 0,47 0,688 1,078 1,588 0,44 0 1,090 2,680 172,824 174,800 3,790 170,864 170,000 5 433,81 0,67 0,766 1,101 3,781 5,588 0 2,688 2,464 172,300 172,840 3,5739012 170,646 170,000 5 433,83 0,67 0,766 1,101 3,781 5,588 0 2,688 2,464 172,300 172,840 3,5739012 170,646 170,000 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| cr6         M6         59,41         Q,322         2,211         58,72         53         227         14,65         0,60         0,12         1,08           M6         M4         77,38         Q,387         37,553         96,36         276         5198         38,77         0,60         0,11         22,53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3,00 219,24 86,28 385,42 0,140 0,601 4,00 2,405 2,405<br>1,00 123,23 132,38 132,38 0,731 13,765 3,05 41,992 41,992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0,059 0,336 2,74 387,82 156,81 550 8 516 5 PVC 0,010 5,72 1;8:<br>0,077 2,277 162,82 174,37 246,72 500 8 450 6 PVC 0,010 3,95 1,6:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 001.78 0.51 0.980 1.140 4.399 8.98 0 2.000 172.880 172.840 5.72 170.880 170.540 7 221.08 0.88 0.748 1.096 2.737 5.11 0 2.444 2.00 172.840 172.690 172.650 172.75 170.770 170.770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,00 123,23 112,38 132,38 0,731 13,765 3,05 41,992 41,992<br>1,00 121,30 3,13 125,51 0,013 13,778 3,05 42,030 42,030<br>1,00 275 3,790 16664 0,000 0,790 400 0,792 2,200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7 231,16 0.27 0.761 1.00 1.770 5.14 0 2,250 2.761 1.780 172,738 193,7464 170,070 169,977                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| N3 19 56,42 0,126 37,722 12,97 99 5102 29,91 0,60 0,08 22,61 19 N2 50,00 0,121 27,944 22,97 4 5106 40,45 0,60 0,07 22,71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3,00 120,72 174,08 203,58 0,262 14,040 3,05 42,770 42,770<br>3,00 119,57 8,68 218,26 0,011 14,051 3,05 42,800 42,800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,056 2,357 45,13 352,35 321,43 600 8 580 5 PVC 0,010 1,97 1,74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4 459.47 0,54 0,767 1,102 1,784 6,65 0 2,763 2,979 172,738 172,732 3,07022233 169,977 169,753 4 458,83 0,48 0,787 1,107 3,836 6,68 0 2,979 3,265 172,722 172,820 3,56 160,753 109,555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 19 h2 50,00 0,121 37,843 22,97 4 5106 40,45 0,60 0,07 22,71 810 h2 80,06 0,380 2,868 58,19 54 480 13,43 0,60 0,22 1,34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3,00 119,57 8,68 318,28 0,011 14,051 3,05 42,800 42,800 3,00 228,20 98,58 <b>830,29</b> 0,141 1,271 4,00 5,084 5,084                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,050 2,407 45,21 361,05 224,23 600 B 580 5 PVC 0,010 3,96 1,74 0,080 0,256 5,38 825,38 442,29 700 700 F96V 0,000 4,79 2,41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| h2 III 64,52 0,265 18,108 86,27 558 5874 40,93 0,60 0,16 22,86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3,00 118,57 164,34 164,34 1,504 15,555 3,02 47,030 47,030<br>100 117,07 27,33 101,67 0,000 15,645 1,02 47,302 47,302                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.005   3.471   1.184   271.57   3.651.5   500   8   450   6   975   0.010   1.35   1.45.1   0.000   0.000   0.010   0.000   0.010   0.000   0.010   0.000   0.010   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000 | 7 2100 0.71 0.827 1.18 4.17 5.27 0 1.365 1.861 1.72.28 1.72.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 1.82.28 |
| M1 17 60,74 0,461 38,978 86,37 42 5550 42,29 0,60 0,29 23,39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3,00 115,83 33,43 225,30 0,111 15,756 3,02 47,593 47,593                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,061 2,592 50,19 272,69 291,94 550 B 516 5 PVC 0,010 1,97 1,61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 236,26 0,63 0,61 1,111 1,898 6,01 0 1,78E 1,783 172,850 172,604 1,96773131 169,062 168,621                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 17   124   55,00   0,45   16,22   16,17   22   59/2   42,92   0,10   0,15   22,51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3,00 114,00 10,15 241,95 (158 15,815 3,02 47,756 47,756 3,00 218,26 82,37 2.833,51 0,346 3,339 4,00 13,357 13,357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,005 2,647 90,00 285,0 296,81 550 8 516 5 PVC 0,010 4,95 1,66<br>0,009 0,419 11,78 2,846,87 689,55 1100 1100 PREV 0,009 4,4 3,11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3,00 113,51 144,70 144,70 3,819 19,633 2,97 58,355 58,355<br>3,00 112,23 0,07 144,77 0,003 19,636 2,97 58,362 58,362                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,066 2,713 197,19 208,06 261,41 550 8 516 5 PVC 0,010 3,97 1,61 0,007 2,720 61,08 201,13 261,60 550 8 516 5 PVC 0,010 3,98 1,61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 336,60 0,68 0,604 1,047 3,383 5,49 0 3,386 3,918 171,990 172,080 3,9329853 166,604 168,342 1 336,91 0,07 0,603 1,047 3,383 5,51 0 3,918 3,912 172,000 172,227 3,98290088 168,342 168,315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.00 227,97 38,57 134,40 0,066 0,220 4,00 0,879 2,200<br>3.00 112,10 136,18 283,94 0,267 10,903 2,97 50,098 59,098                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0,000 0,183 2,38 136,60 243,29 450 8 390 6 PVC 0,010 5,98 1,64 0,002 2,772 61,87 341,04 318,05 600 8 580 5 PVC 0,010 3.04 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4 195.00 0.61 0.698 1.081 2.627 6.55 0 3.900 1.610 173.76 172.27 5.68 106.976 188.617 195.00 0.748 1.099 1.755 6.59 0 3.012 3.731 272.27 27.280 27.282423 106.976 188.617                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| jul in13 100,91 0,580 1,185 86,37 64 103 12,58 0,60 0,35 0,71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3,00 234,97 103,35 190,39 0,169 0,273 4,00 1,091 2,200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,101 0,157 2,16 192,59 294,61 400 B 390 6 PVC 0,010 8,15 1,94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4 231,24 0,87 0,833 1,119 3,957 9,63 © 2,150 3,533 171,300 171,840 8,85 169,150 168,307                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| m31   m12   74,66   0,155   26,755   26,75   26,72   311   7647   44,74   0,65   0,69   22,75     Theorem   m11   m12   74,60   0,155   0,355   86,24   31   31   12,00   0,60   0,20   0,70     m12   66   50,07   0,112   26,688   56,24   50   7607   85,45   0,60   0,07   224,81     m13   27,65   0,000   32,748   56,24   50   7000   56,00   0,00   0,00   0,00     m14   27,65   0,000   32,748   56,24   50   7000   56,00   0,00   0,00   224,51     m15   m15   27,65   0,000   32,748   56,24   50   7000   56,00   0,00   0,00   0,00     m15   m1   | A,00 211,19 200,78 489,67 0,947 20,250 2,97 60,052 60,052 3,00 239,79 48,20 48,20 0,087 0,087 4,00 0,350 2,200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,074 0,074 2,27 50,40 203,12 315 8 270 6 PVC 0,010 16,78 2,31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 122,96 0,58 0,410 0,950 2,928 10,49 0 1,800 2,950 171,440 171,340 16,78 169,640 188,390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| in12 i6 50,97 0,112 30,688 98,24 50 7697 45,42 0,60 0,07 23,81 i6 in11 27,65 0,000 30,748 98,24 6 7703 45,80 0,60 0,04 23,85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,00 109,98 55,59 540,26 0,112 20,383 2,96 60,416 60,416<br>1,00 109,29 1,93 544,20 0,016 20,399 2,96 60,460 60,660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,051 2,902 63,32 600,68 377,27 700 700 PRFV 0,009 3,96 2,51 0,028 2,930 63.39 604.66 379,12 700 700 PRFV 0,009 4,01 2,21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9 842,21 0,39 0,713 1,086 3,649 7,85 0 2,545 3,666 171,240 171,259 1,94311556 167,795 167,991 0 847,65 0,21 0,713 1,086 3,649 7,95 0 3,666 3,608 171,259 171,090 4,01446655 167,593 167,482                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3,00 216,20 94,51 1.404,52 0,183 1,102 4,00 4,407 4,407                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,091 0,919 5,33 1.408,93 616,19 800 800 PRFV 0,009 9,86 3,77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7 1.596,64 0,60 0,741 1,095 3,723 22,58 0 2,148 2,850 177,290 170,000 9,86 102,142 582,240 1 237,41 0,55 0,777 1,105 3,810 5,98 0 3,608 3,971 271,090 171,240 3,9229902 167,822 167,822                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1831   1830   54,68   0,007   28,955   98,24   488   8386   46,01   0,00   0,00   22,92   1831   1830   6,02   0,00   0,229   98,24   1   23   12,51   0,60   0,00   0,14   1831   1830   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   1831   183   | 3,00 215,52 0,57 32,94 0,003 0,061 4,00 0,244 2,200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,006 0,057 2,26 35,14 160,68 315 B 270 6 PVC 0,010 9,89 1,61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 81/41 0.55 0.777 1,105 0,109 5,98 0 0,000 1,001 171,100 1,9889990 107,400 0.59 0.59 0.50 0.50 0.772 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0.0372 0,000 0 |
| pj1 lin9 44,43 0,506 4,980 98,24 57 685 17,04 0,60 0,06 2,99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | a,000 107,97 01,38 259,57 0,185 21,863 2,95 64,471 64,471 1,00 203,48 77,85 491,28 0,151 1,814 4,00 7,256 7,256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ULIND ALUNE 07,54 224,04 212,00 550 B 516 5 PVC 0,010 4,01 1,62 0,044 0,999 B,25 498,54 415,50 550 B 516 6 PVC 0,010 10,02 2,54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 534,42 0,29 0,933 1,137 4,256 15,68 0 2,850 3,025 172,310 172,040 10,02 169,460 169,015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ing nv7 25,74 0,001 40,295 45,65 780 5036 47,64 0,60 0,00 24,18 nv6 nv7 20,82 0,021 1,698 45,65 1 494 16,83 0,70 0,01 1,19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3,00 105,49 34,81 294,39 2,066 23,929 2,93 70,097 70,097<br>3,00 204,80 3,01 541,24 0,003 1,308 4,00 5,233 5,233                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,026 3,094 73,19 364,68 225,99 600 8 580 5 PVC 0,010 4,00 1,71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 661,20 0,25 0,790 1,108 3,844 6,76 0 5,112 4,877 172,040 171,702 4 166,928 156,925 9 959,81 0,11 0,569 1,033 3,302 41,80 0 1,500 2,100 172,008 171,702 32,32 170,568 169,022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| nv7 IS 61,05 0,309 40,604 45,65 576 9612 47,69 0,60 0,19 24,36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3,00 106,08 74,95 369,33 1,525 25,454 2,92 74,228 74,228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.001 0.002 0.12 540,00 50.16 500 B 580 5 PVC 0.00 4,00 1,24<br>0.001 3,155 77,00 440,05 350,05 600 B 580 5 PVC 0.00 4,00 1,24<br>0.000 3,125 77,00 440,05 344,45 600 600 PPV 0.009 4,00 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5 505,01 0,11 0,500 1,001 1,000 0,000 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0 1,000 0  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3,00 105,12 25,36 394,69 0,650 25,504 2,92 74,364 74,364 3,00 104,04 26,28 420,97 0,653 25,557 2,92 74,507 74,507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,080 3,235 77,60 469,05 344,45 600 600 PREV 0,009 4,00 1,91 0,080 3,315 77,82 485,48 351,60 600 600 PREV 0,009 4,00 1,91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8 50,93 0,57 0,856 1,119 3,966 7,20 0 4,448 3,776 171,229 170,007 4 164,581 166,561 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51 1 560,51  |
| Inil II 66,15 0,289 41,755 45,65 14 9665 49,62 0,60 0,17 25,03<br>II II 65,00 0,304 42,020 45,65 14 9679 50,17 0,60 0,18 25,21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3,00 102,98 17,86 438,83 0,037 25,594 2,91 74,607 74,607<br>3,00 102,13 18,63 457,46 0,037 25,631 2,91 74,708 74,708                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.065 1.446 78.15 532.16 361.15 600 600 PRFV 0.009 4.00 1.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9 561,25 0,56 0,915 1,125 4,195 7,27 0 2,859 1,167 168,800 168,841 4,00604686 165,941 155,676 8 560,93 0,55 0,949 1,129 4,113 7,29 0 1,167 1,127 168,841 168,743 4 165,676 165,416                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 13 12 65,00 Q,288 42,208 45,65 14 9693 50,72 Q,60 Q,17 25,38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3,00 101,30 17,50 474,96 0,037 25,669 2,91 74,808 74,808 3,00 100,46 13,38 488,34 0,039 25,669 2,91 74,808 74,808 74,808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,065 3,511 78,32 549,77 365,58 600 600 PRFV 0,009 4,00 1,98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8 560,93 0,55 0,980 1,140 4,441 7,31 0 3,327 3,535 168,743 168,691 4 165,416 165,156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 14 p4 05,00 0,422 42,560 45,00 11 9706 51,46 0,60 0,13 25,52 12 12 17 13,54 0,60 0,04 0,27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3,00 227,43 989,55 1.214,58 0,244 0,461 4,00 1,843 2,200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 846,12 0,49 0,666 1,070 3,512 7,75 0 3,513 3,884 168,691 163,780 4 165,156 164,996 1 1434,78 0,22 0,854 1,123 4,055 13,25 0 1,000 2,230 186,580 166,780 5,564 166,780 56,570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 11 dt1 55,64 0,524 43,527 45,65 24 15745 52,06 0,60 0,31 26,12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3,00 99,75 178,26 666,60 15,934 41,632 2,81 117,103 117,103<br>3,00 99,31 31,22 697,83 0,064 41,695 2,81 117,269 117,269                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,040 3,616 120,72 781,71 417,57 700 700 PRIV 0,009 4,00 2,00 0,006 3,672 120,59 815,10 422,76 700 700 PRIV 0,009 3,95 2,10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 896,12 0,49 0,425 1,146 4,248 8,48 0 4,89 4,000 156,780 156,120 4 156,806 154,755 18 890,12 0,42 0,969 1,140 4,375 8,42 0 4,090 4,474 158,825 156,890 3,55 156,735 156,735                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| dt1 E5 50,00 0,000 43,528 14,72 2229 17974 52,48 0,60 0,00 26,12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3,00 98,70 89,56 787,39 5,903 47,598 2,79 132,577 132,577                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,050 3,722 136,30 919,96 478,47 700 700 PRIV 0,009 6,00 2,61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9 1.036,28 0,31 0,888 1,130 4,132 12,62 © 4,434 3,567 156,090 167,773 6 164,516 154,216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3Afos 234,3 16,1 -0,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

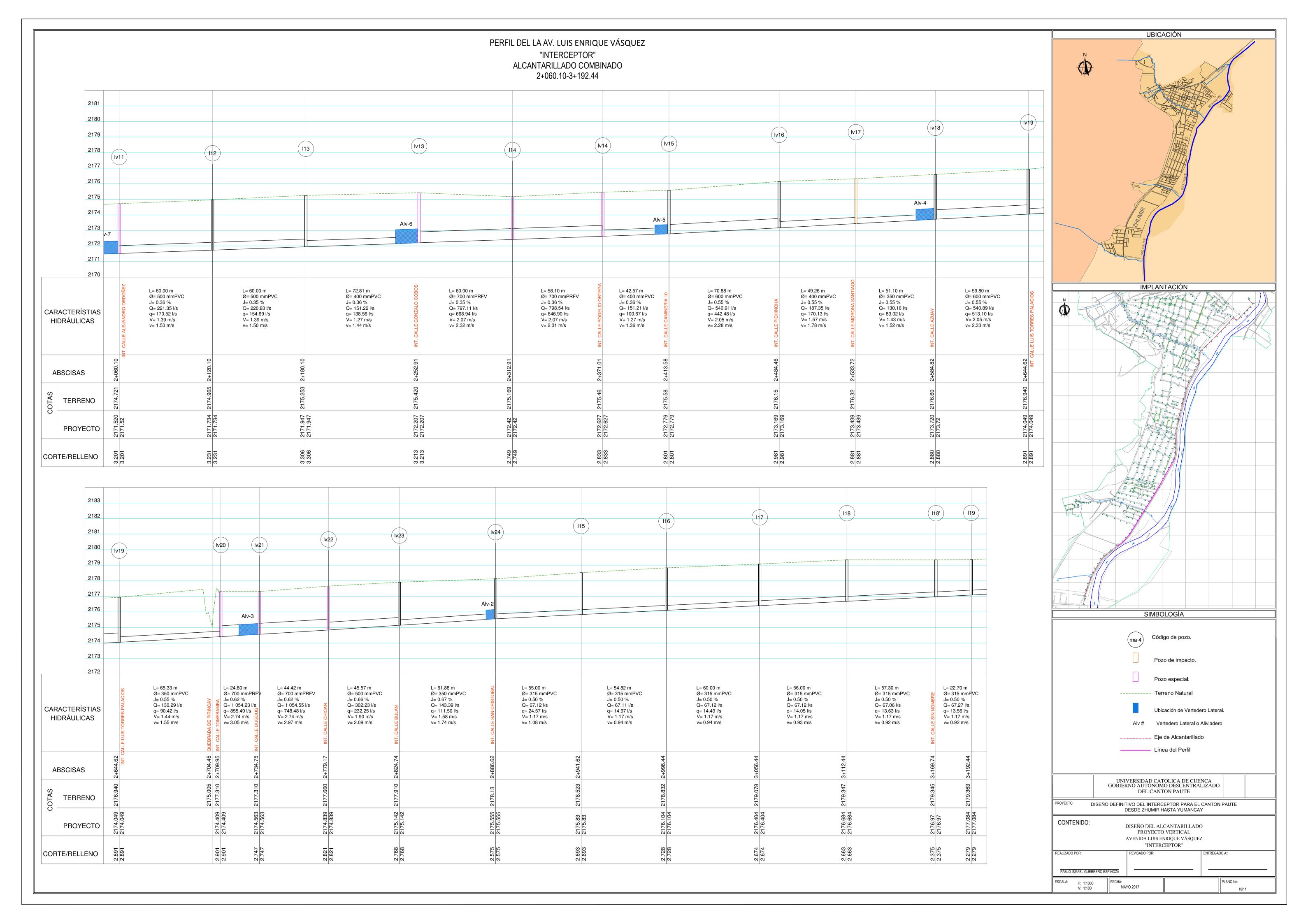

1,54771869 0,31168547

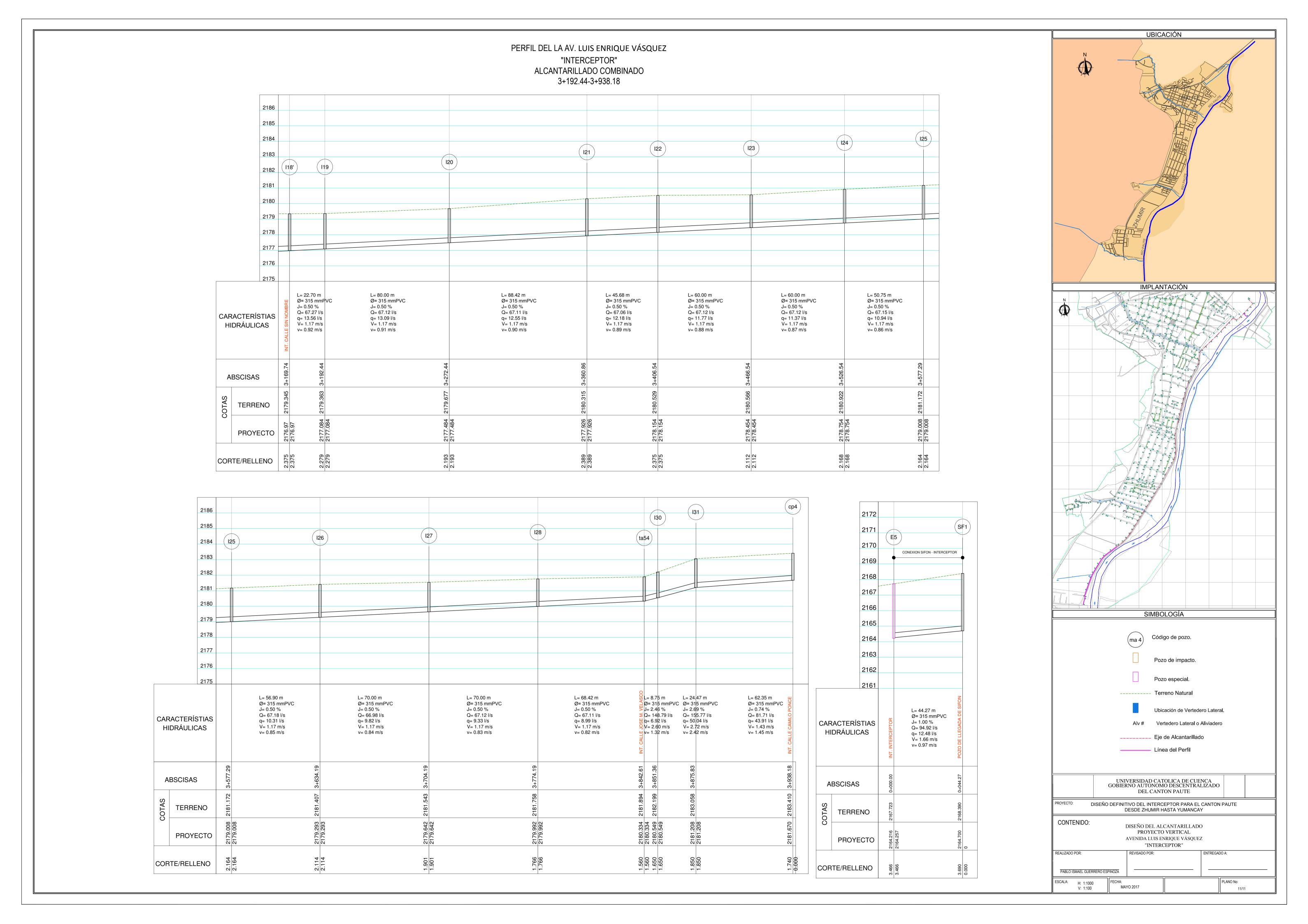













|    | DIMENSIONAMIENTO                                                                        | DE LOS VI        | RTEDER                | OS LATE                                          | RALES DE EXCESOS PARA CANALES O                                            | CIRCULARES     | O RECTANGULARES                                                           |                |
|----|-----------------------------------------------------------------------------------------|------------------|-----------------------|--------------------------------------------------|----------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------|----------------|
| 30 | DATOS                                                                                   | SIMBOLO          |                       |                                                  | CRITERIO                                                                   | CALCULO        | RESULTADO                                                                 | UNID           |
| ,0 | VERTEDERO INTERCEPTOR Iv21 - I                                                          |                  |                       | UNIDAD                                           | CKITERIO                                                                   | CALCULO        | RESOLIADO                                                                 | UNID           |
|    | Diámetro o ancho de la tubería                                                          | DóB              | 0,700                 | m                                                | 200 400                                                                    |                |                                                                           |                |
|    | Pendiente de la tubería o canal Rugosidad de la tubería o canal                         | i<br>n           | <b>0,006</b><br>0,009 | m/m                                              | Q-max = Kmax x $D^{8/3}$ x $i^{1/2}/n$                                     | 1,13           | Caudal máximo para canal<br>circular                                      | m <sup>3</sup> |
|    | K para relación (d/D) <sub>max</sub> = 94%                                              | Kmax             | 0,3353                |                                                  |                                                                            |                | Circulai                                                                  |                |
|    | K1 para calcular área para Qmax                                                         | K1               | 0,7662                |                                                  |                                                                            | 0,38           | Area de sección transversal                                               | m              |
|    | Caudal Physial Maxima para un paríada da                                                |                  |                       |                                                  | $Am = K1 \times D^2$                                                       |                | para caudal máximo tub. Circular                                          | - "            |
|    | Caudal Pluvial Maximo para un período de retorno de 5 años                              | QP               | 839,2300              | It/s                                             | Vmax = Qmax/A                                                              | 3,02           | Velocidad transversal<br>con caudal máximo                                | m              |
|    | Altura del canal                                                                        | Н                | 0,000                 | m                                                |                                                                            | .,.            | Determinación de Kmax para                                                |                |
|    | Relación H/B                                                                            | H/B              | 0,000                 |                                                  | Kmax = f(H/B)                                                              | canal circular | canales rectangulares                                                     | -              |
| '  |                                                                                         |                  |                       |                                                  | Q-max = Kmax x $B^{8/3}$ x $i^{1/2}/n$                                     | canal circular | Caudal máximo a transportar<br>para tubería rectangular                   | m              |
|    |                                                                                         |                  |                       |                                                  |                                                                            |                | Velocidad transversal                                                     | m              |
| -  | Caudal Sanitaria Madia                                                                  | 00               | 17 010                | It/s                                             | Vmax = Q-max/(B x H)                                                       | canal circular | con caudal máximo                                                         | <del>  "</del> |
|    | Caudal Sanitario Medio Relación de dilución entre 2,5 y 5                               | Qs<br>R          | 17,810<br>3,000       | 10'8                                             | QS = R x Qs/1000                                                           | 0,053          | Caudal máximo a transportar en<br>tubería sanitaria                       | m              |
|    |                                                                                         |                  |                       |                                                  |                                                                            |                | Relación par determinación de                                             |                |
|    |                                                                                         |                  |                       |                                                  | $K = QS \times n/(D^{8/3} \times i^{1/2})$                                 | 0,0158         | calado de agua en la tubería                                              | -              |
| '  |                                                                                         |                  |                       |                                                  | Y/B = f(K)                                                                 | 0,15           | Relación calado a diámetro ó<br>ancho                                     |                |
| )  |                                                                                         |                  |                       |                                                  | 112 1(17)                                                                  | -,,,,          | calado de agua en la tubería circular                                     |                |
|    |                                                                                         |                  |                       |                                                  | Y = (Y/B) x B                                                              | 0,11           | ó rectangular con caudal mínimo                                           |                |
| 1  | Determinación del coeficiente K1                                                        | K1 = f(Y/B)      | 0,07                  |                                                  | A . K4 :: D <sup>2</sup>                                                   | 0.0363         | Area de sección transversal                                               |                |
| 2  |                                                                                         | V1 = I(1/R)      | 0,07                  |                                                  | $A = K1 \times D^2$                                                        | 0,0362         | en tubería circual<br>Velocidad transversal en la                         | +              |
|    |                                                                                         |                  |                       |                                                  | V = Q/A                                                                    | 1,48           | tubería circual con caudal mínimo                                         |                |
| 3  |                                                                                         |                  |                       | 76:5                                             |                                                                            |                | Velocidad transversal en la tubería                                       |                |
|    | Cálculo con la ecuación de Ackers                                                       |                  |                       | 764,73<br>56,69                                  | V = Q/(B x Y)                                                              | canal circular | rectangular con caudal mínimo                                             | 1              |
|    | Velocidad con caudal máximo                                                             | Vn               | 3,018                 | m/s                                              |                                                                            |                | Cálculo de la energía específica                                          | T              |
|    | Coeficiente corrección energía cinetica                                                 | $\alpha_1$       | 1,200                 |                                                  | $Ew = \alpha \times Vn^2/2g + (dn - Y)$                                    |                | <u> </u>                                                                  |                |
|    | Aceleración de la gravedad                                                              | g                | 9,810                 | m/s                                              |                                                                            | 1,11           |                                                                           |                |
| 5  | Altura del canal para Qmáximo                                                           | dn               | 0,660                 | m                                                |                                                                            |                | Relación calado a energía                                                 | +              |
| _  |                                                                                         |                  |                       |                                                  | (w=Y/Ew) < 0,6                                                             | 0,09           | específica                                                                | 1              |
| ŝ  | Relación entre h1 y h2 (calado de ingreso                                               | n <sub>2</sub>   | 21,000                |                                                  | $L_2 = 2.03 \times B \times (2.828 \times \sqrt{(n_2 - 0.4)(1 - 0.4 w)} +$ |                | Longitud requerida para el                                                |                |
| 7  | y calado de salida)                                                                     |                  | 4.400                 |                                                  | $+ 0.31 \text{ w} - 0.984 \text{ ar } \cos \sqrt{(0.4/n, )} + 0.065$       | 12,50          | vertedero                                                                 |                |
|    | Coeficiente de corrección energía cinética  Coeficiente de corrección energía presiones | α <sub>2</sub> ` | 1,400<br>0,950        |                                                  | $V2 = ((2g/\alpha_2) (Ew - \alpha_2' \times Ew/(2 \times n_2)))^{0.5}$     | 3,90           | Determinación de la velocidad<br>en el extremo inferior del vertedro      |                |
| 3  | Coolidate de confección chargia prociones                                               | u <sub>2</sub>   | 0,000                 |                                                  | VZ - ((29/02) (2W - 02 X 2W (2 X 112)))                                    | 0,00           | Altura del calado de agua en el                                           |                |
|    |                                                                                         |                  |                       |                                                  | h1 = 0,5 x Ew                                                              | 0,56           | vertedero al ingreso                                                      |                |
| 9  |                                                                                         |                  |                       |                                                  | 10 14/-                                                                    | 0.00           | Altura del calado de agua en el                                           |                |
| )  |                                                                                         |                  |                       | 41,64                                            | h2 = h1/n <sub>2</sub>                                                     | 0,03           | vertedero a la salida<br>Calado de agua a la salida                       |                |
| ,  |                                                                                         |                  |                       | 41,04                                            | d2 = Y + h2                                                                | 0,13           | del vertedero lateral                                                     |                |
| 1  | Relación calado a diámetro o ancho del                                                  |                  |                       |                                                  |                                                                            |                | Determinación del coeficiente                                             |                |
| _  | colector                                                                                | d2/B             | 0,188                 |                                                  | K = f(d2/B)                                                                | 0,02           | K1 para determinación caudal                                              |                |
| 2  |                                                                                         |                  |                       |                                                  | $Q = K \times (D^{8/3} \times i^{1/2})/n$                                  | 0,0745         | Caudal a transportar despues del<br>vertedero lateral                     | r              |
| 3  | Relación longitud ancho del canal                                                       | L/B              | 17,86                 |                                                  | Q-KX(B-X1 )/II                                                             | 0,0.40         | Valor a verificar en la tabla de la                                       |                |
|    | Relación calado a energía específica                                                    | w                | 0,0944                |                                                  | n2 = f(L/B;w)                                                              | 13,70          | figura 5.16 pag 199 Metcalf y Eddy                                        |                |
| 1  | Diámetro de la tubería para Q sanitario  Caudal Sanitario máximo                        | Ds<br>QS         | 0,340                 | m<br>m <sup>3</sup> /s                           | $K = QS \times n/(Ds^{8/3} \times i^{1/2})$                                | 0,1279         | Relación par determinación de<br>calado de aqua en la tubería             |                |
|    | Pendiente de la tubería o canal                                                         | i                | 0,006                 | m/m                                              | K = QS X IV(DS · XI )                                                      | 0,1279         | calado de agua en la tuberia                                              |                |
| _  | Rugosidad de la tubería o canal                                                         | n                | 0,010                 |                                                  |                                                                            |                |                                                                           |                |
| 5  |                                                                                         |                  |                       |                                                  | VID. 640                                                                   |                | Relación calado a diámetro ó                                              |                |
| 3  |                                                                                         |                  |                       |                                                  | Y/B = f(K)                                                                 | 0,44           | ancho calado de agua en la tubería circular                               | +              |
| 1  |                                                                                         |                  |                       |                                                  | $Y_2 = (Y/B) \times B$                                                     | 0,15           | ó rectangular con caudal mínimo                                           |                |
| 7  |                                                                                         |                  |                       |                                                  |                                                                            | -0,03          | Desnivel a que se debe colocar la                                         |                |
|    |                                                                                         |                  |                       |                                                  | Δ = Y2 - Y                                                                 | 0,04           | t.sanitaria respescto a la t.principal                                    | <u> </u>       |
| 3  | K para relación (d/D) <sub>max</sub> = 94%                                              | Kmax             | 0,3353                |                                                  | Q-max = Kmax x Ds <sup>8/3</sup> x i <sup>1/2</sup> / n                    | 0,14           | Caudal máximo a llevar en la tubería<br>sanitaria                         | r              |
| 9  | K1 para determinar área para máximo                                                     | K1               | 0,7662                |                                                  | Q-max = Kmax x bs - x i / ii                                               | 0,14           | Velocidad con caudal máximo                                               |                |
|    | caudal                                                                                  |                  |                       |                                                  | V-max-s = Q-max/(K1 x Ds $^2$ )                                            | 1,58           |                                                                           |                |
|    | Cálculo con la ecuación de Babbit                                                       | _                |                       |                                                  |                                                                            | <u> </u>       | Colodo do assus a seculativa futa                                         |                |
| )  |                                                                                         |                  |                       |                                                  | Ymax = 0,94 x Ds                                                           | 0,3196         | Calado de agua a caudal máximo                                            |                |
| 1  |                                                                                         |                  |                       |                                                  | ux - 0,07 x D3                                                             | 3,0100         | Calado de agua a la salida del                                            | -              |
|    |                                                                                         |                  |                       |                                                  | h2 = Ymax - Y <sub>2</sub>                                                 | 0,17           | vertedero lateral.                                                        |                |
| 2  |                                                                                         |                  |                       |                                                  | h1 = H - Y <b>ó</b> h1 = 0,94 x D - Y                                      | 0,553          | Calado de agua al ingreso del                                             |                |
| 3  | Velocidad de aproximación con                                                           | Vmax             | 3,02                  | m/s                                              | III - III - II 0 III = U,94 X U - Y                                        | 0,553          | vertedero lateral.  Determinación de la longitud                          | +              |
|    | caudal máximo                                                                           |                  | -                     |                                                  | L = 7,55 x Vmax x d x log(h1/h2)                                           | 8,18           | del vertedero lateral                                                     |                |
|    | Dimensionamiento de la transición Diámetro o base tubería ingreso                       | BoD              | 0,7                   |                                                  |                                                                            | <u> </u>       | Longitud de la transición                                                 |                |
|    | Diámetro o base tubería ingreso Diámetro o base tubería salida                          | Ds               | 0,7                   | m<br>m                                           | $I = (B-Ds)/(tag\theta)$                                                   | 3,4            | Longitud de la transición                                                 |                |
|    | Angulo de transición                                                                    | θ                | 6                     | grados                                           | \/\-g <sup>0</sup> /                                                       | -,.            |                                                                           | $\perp$        |
| 5  | Relación diámetro tubería versus radio de                                               |                  | _                     |                                                  |                                                                            |                | Radio de curvatura en la tubería                                          |                |
| 3  | curvatura recomendado  Angulo entre el colector principal                               | r/Ds             | 2                     | <del>                                     </del> | r = 2 x Ds                                                                 | 0,68           | Longitud de la curva                                                      | +              |
| 1  | y la tubería sanitaria                                                                  | ω                | 99,874833             | grados                                           | $Ic = \omega \times (r + Ds/2)/180$                                        | 0,47           | Longitud de la Cuiva                                                      |                |
|    | Coeficiente de pérdida por cambio de                                                    |                  |                       |                                                  |                                                                            |                | Pérdida de carga porcambio de                                             |                |
|    | dirección según el ángulo de giro                                                       | р                | 0,034                 |                                                  | $hf = p \times V-max-s^2/(2 \times g)$                                     | 0,034          | dirección en el interior del colector                                     | <u> </u>       |
| 3  |                                                                                         |                  |                       |                                                  | $i = (hf + \Delta)/(I + Ic)$                                               | 2,03%          | Pendiente en el canal de transición<br>por cambio de dirección y desnivel |                |
|    | VERTEDERO INTERCEPTOR 11 - dt1                                                          | ; ALV 13         | Variant               | te: ji2 - ji1                                    |                                                                            | 2,03 %         | por cambio de dirección y desnivel                                        | 1              |
|    | Diámetro o ancho de la tubería                                                          | D ó B            | 1,000                 | m m                                              |                                                                            |                |                                                                           |                |
|    | Pendiente de la tubería o canal                                                         | i                | 0,005                 | m/m                                              | Q-max = Kmax x $D^{8/3}$ x $i^{1/2}/n$                                     | 2,63           | Caudal máximo para canal                                                  |                |
|    | Rugosidad de la tubería o canal                                                         | n                | 0,009                 |                                                  |                                                                            |                | circular                                                                  | r              |
|    | K para relación (d/D) <sub>max</sub> = 94%<br>K1 para calcular área para Qmax           | Kmax<br>K1       | 0,3353                | <del>                                     </del> |                                                                            | 0,77           | Area de sección transversal                                               | +              |
|    | para carcarar area para cellida                                                         | KI               | 0,7002                |                                                  | Am = K1 x D <sup>2</sup>                                                   | 0,11           | para caudal máximo tub. Circular                                          |                |
|    | Caudal Pluvial Maximo para un período de                                                |                  |                       | 1                                                |                                                                            |                | Velocidad transversal                                                     | _              |

PLANILLA DE CALCULO DIMENSIONAMIENTO DE LOS VERTEDEROS LATERALES DE EXCESOS PARA CANALES CIRCULARES O RECTANGULARES UNIDAD Diámetro o ancho de la tubería DóB 1,000 m endiente de la tubería o cana m/m  $\Omega$ -max = Kmax x  $D^{8/3}$  x  $i^{1/2}/n$ 2.63 Caudal máximo para canal 0.009 circular m<sup>3</sup>/s Rugosidad de la tubería o can para relación (d/D)<sub>max</sub> = 94% Kmax 0.3353 5 K1 para calcular área para Qmax K1 0,7662 0,77 Area de sección transversal  $Am = K1 \times D^2$ para caudal máximo tub. Circula 6 Velocidad transversal Vmax = Qmax/A 3,44 m/s con caudal máximo Altura del canal Н 0.000 Detaerminación de Kmax para Relación H/B Kmax = f(H/B)H/B 0,000 canal circular canales rectangulares 8 Q-max = Kmax x  $B^{8/3}$  x  $i^{1/2}$ / n m3/s canal circular para tubería rectangular Velocidad transvers Vmax = Q-max/(B x H)canal circular con caudal máximo m/s Caudal Sanitario Medio Qs 43,250 lt/s Relación de dilución entre 2,5 y 5 R 3.000 QS = R x Qs/1000 0,130 tubería sanitaria m<sup>3</sup>/s 11 Relación par determinación de calado de agua en la tubería  $K = QS \times n/(D^{8/3} \times i^{1/2})$ 0,0165 12 Relación calado a diámetro ó Y/B = f(K)0,15 ancho 13 calado de agua en la tubería circular  $Y = (Y/B) \times B$ 0,15 ó rectangular con caudal mínimo m Area de sección transversal 14 Determinación del coeficiente K1 K1 = f(Y/B)0,07 0,0739 en tubería circual  $A = K1 \times D^2$ 15 Velocidad transversal en la V = Q/A1.76 tubería circual con caudal mínimo 16 Velocidad transversal en la tubería 1869.8  $V = Q/(B \times Y)$ canal circular rectangular con caudal mínimo m Cálculo con la ecuación de Ackers 149,95 17 3.438 Velocidad con caudal máximo Vn m/s Cálculo de la energía específica Coeficiente corrección energía cinetica  $\alpha_1$ 1,200  $Ew = \alpha \times Vn^2/2g + (dn - Y)$ celeración de la gravedad 9,810 m/s 1,51 m g Altura del canal para Qmáxim dn 0,940 Relación calado a energía específica (w=Y/Ew) < 0.60.10 Relación entre h1 y h2 (calado de ingreso 18,000  $L_2 = 2.03 \times B \times (2.828 \times \sqrt{(n_2 - 0.4)(1 - 0.4 w)} +$ n<sub>2</sub> Longitud requerida para el calado de salida)  $0.31 \text{ w} - 0.984 \text{ ar } \cos \sqrt{(0.4/n,)} + 0.065$ 20 Coeficiente de corrección energía cinética  $\alpha_2$ 1.400 Determinación de la velocidad  $V2 = ((2g/\alpha_2) \; (\mathsf{Ew} - \alpha_2' \; \mathsf{x} \; \mathsf{Ew}/(2 \; \mathsf{x} \; \mathsf{n}_2)))^{0.5}$ 4,54 en el extremo inferior del vertedro m/s Coeficiente de corrección energía presiones  $\alpha_2$ 0,950 Altura del calado de agua en el h1 = 0,5 x Ew 0,76 vertedero al ingreso Altura del calado de agua en el 22 h2 = h1/n-0.04 vertedero a la salida m 23 Calado de agua a la salida d2 = Y + h20,19 m del vertedero lateral 24 Relación calado a diámetro o ancho del Determinación del coeficiente d2/B 0,192 K = f(d2/B)0,02 K1 para determinación cauda colector 25 Caudal a transportar despues del  $Q = K x (D^{8/3} x i^{1/2})/n$ 0,1932 vertedero lateral m<sup>3</sup>/s 26 Relación longitud ancho del canal 15 95 Valor a verificar en la tabla de la Relación calado a energía específica w 0,0991 n2 = f(L/B;w)15,00 figura 5.16 pag 199 Metcalf y Eddy 27 Diámetro de la tubería para Q sanitario Ds 0,600 Relación par determinación de  $K = QS \times n/(Ds^{8/3} \times i^{1/2})$ 0.0726 audal Sanitario máximo QS 0.130 calado de agua en la tubería endiente de la tubería o canal m/m Rugosidad de la tubería o canal n 0.009 28 Relación calado a diámetro ó Y/B = f(K)0,32 m ancho 29 calado de agua en la tubería circular  $Y_2 = (Y/B) \times B$ m/s ó rectangular con caudal mínimo 30 -0.04 Desnivel a que se debe colocar la ∆ = Y2 - Y 0,04 t.sanitaria respescto a la t.principal K para relación (d/D)<sub>max</sub> = 94% 0,3353 31 Caudal máximo a llevar en la tubería Q-max = Kmax x Ds8/3 x i1/2/ n 0.5996 sanitaria m<sup>3</sup>/s 32 0,7662 Velocidad con caudal máximo K1 para determinar área para máximo V-max-s = Q-max/( $K1 \times Ds^2$ ) 2.17 m/s Cálculo con la ecuación de Babbit 33 Calado de agua a caudal máximo Ymax = 0,94 x Ds 0.564 m 34 Calado de agua a la salida del  $h2 = Ymax - Y_2$ 0,372 vertedero lateral. m 35 Calado de agua al ingreso del h1 = H - Y **ó** h1 = 0,94 x D - Y 0,79 vertedero lateral. 36 Velocidad de aproximación con Vmax 3,44 m/s Determinación de la longitud  $L = 7,55 \times Vmax \times d \times log(h1/h2)$ del vertedero lateral Dimensionamiento de la transición 3 BoD Longitud de la transición Diámetro o base tubería ingreso m 0.6  $I = (B-Ds)/(tag\theta)$ 3.8 m iámetro o base tubería sa θ angulo de transición 6 grados 38 ción diámetro tubería versus radio de Radio de curvatura en la tubería r/Ds 2 r = 2 x Ds curvatura recomendado 1,2 39 angulo entre el colector principal Longitud de la curva la tubería sanitaria 0 grados  $Ic = \omega x (r + Ds/2)/180$ 0 m Coeficiente de pérdida por cambio de Pérdida de carga porcambio de 0.000 lirección según el ángulo de giro 0  $hf = p \times V-max-s^2/(2 \times g)$ dirección en el interior del colector m 41 Pendiente en el canal de transición  $i = (hf + \Delta)/(I + Ic)$ 1,11% 0/6 por cambio de dirección y desnivel VERTEDERO INDIA PUA pj1 - in9; ALV 18 Diámetro o ancho de la tubería DóB m endiente de la tubería o cana m/m Q-max = Kmax x  $D^{8/3}$  x  $i^{1/2}/n$ 0.59 Caudal máximo para canal 0,009 circular m<sup>3</sup>/s Rugosidad de la tubería o canal n para relación (d/D)<sub>max</sub> = 94% 0,3353 2 K1 para calcular área para Omax K1 0.7662 0.19 Area de sección transversal para caudal máximo tub. Circula  $Am = K1 \times D^2$ Caudal Pluvial Maximo para un período de Velocidad transversal etorno de 5 años Vmax = Qmax/A

Altura del canal

0,000

con caudal máximo

Detaerminación de Kmax para

|   | DIMENSIONAMIENTO                                                                                                                                                                                                                                                                                                                                                                                               | DE LOS V                             | ERTEDER                                                                                       | OS LAT          | ERALES DE EXCESOS PARA CANALES O                                                               | IRCULARES (                | RECTANGULARES                                                                                                                                                                                                    |          |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------|-----------------|------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 0 | DATOS                                                                                                                                                                                                                                                                                                                                                                                                          | SIMBOLO                              | VALOR                                                                                         | UNIDAD          |                                                                                                | CALCULO                    | RESULTADO                                                                                                                                                                                                        | UI       |
|   | Relación H/B                                                                                                                                                                                                                                                                                                                                                                                                   | H/B                                  | 0,000                                                                                         |                 | Kmax = f(H/B)                                                                                  | canal circular             | canales rectangulares Caudal máximo a transportar                                                                                                                                                                |          |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                                                                               |                 | Q-max = Kmax x B <sup>8/3</sup> x i <sup>1/2</sup> / n                                         | canal circular             | para tubería rectangular                                                                                                                                                                                         |          |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                                                                               |                 | Q-max = Ninax x B x 1 7 m                                                                      |                            | Velocidad transversal                                                                                                                                                                                            |          |
|   | Occided Operate Adams                                                                                                                                                                                                                                                                                                                                                                                          | 0:                                   | 0.050                                                                                         | 11/-            | Vmax = Q-max/(B x H)                                                                           | canal circular             | con caudal máximo                                                                                                                                                                                                |          |
|   | Caudal Sanitario Medio Relación de dilución entre 2,5 y 5                                                                                                                                                                                                                                                                                                                                                      | Qs<br>R                              | 8,250<br>3,000                                                                                | It/s            | QS = R x Qs/1000                                                                               | 0,025                      | Caudal máximo a transportar en<br>tubería sanitaria                                                                                                                                                              |          |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | -,,,,,                                                                                        |                 |                                                                                                | -,                         | Relación par determinación de                                                                                                                                                                                    |          |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | 450,230                                                                                       |                 | $K = QS \times n/(D^{8/3} \times i^{1/2})$                                                     | 0,0141                     | calado de agua en la tubería                                                                                                                                                                                     |          |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                                                                               |                 | Y/B = f(K)                                                                                     | 0,14                       | Relación calado a diámetro ó<br>ancho                                                                                                                                                                            |          |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                                                                               |                 | 175 1(11)                                                                                      | 0,11                       | calado de agua en la tubería circular                                                                                                                                                                            |          |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                                                                               |                 | Y = (Y/B) x B                                                                                  | 0,07                       | ó rectangular con caudal mínimo                                                                                                                                                                                  |          |
|   | Determinación del coeficiente K1                                                                                                                                                                                                                                                                                                                                                                               | K1 = f(Y/B)                          | 0,07                                                                                          |                 | A = K1 x D <sup>2</sup>                                                                        | 0,0167                     | Area de sección transversal<br>en tubería circual                                                                                                                                                                |          |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                | K1 = I(17b)                          | 0,07                                                                                          |                 | A = KT X D                                                                                     | 0,0107                     | Velocidad transversal en la                                                                                                                                                                                      |          |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                                                                               |                 | V = Q/A                                                                                        | 1,48                       | tubería circual con caudal mínimo                                                                                                                                                                                |          |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                                                                               | 440.00          | V = 0//P :: V)                                                                                 |                            | Velocidad transversal en la tubería                                                                                                                                                                              |          |
|   | Cálculo con la ecuación de Ackers                                                                                                                                                                                                                                                                                                                                                                              |                                      |                                                                                               | 449,02<br>34,75 | V = Q/(B x Y)                                                                                  | canal circular             | rectangular con caudal mínimo                                                                                                                                                                                    | <u> </u> |
|   | Velocidad con caudal máximo                                                                                                                                                                                                                                                                                                                                                                                    | Vn                                   | 3,063                                                                                         | m/s             |                                                                                                |                            | Cálculo de la energía específica                                                                                                                                                                                 |          |
|   | Coeficiente corrección energía cinetica                                                                                                                                                                                                                                                                                                                                                                        | $\alpha_1$                           | 1,200                                                                                         |                 | Ew = $\alpha \times Vn^2/2g + (dn - Y)$                                                        |                            | - '                                                                                                                                                                                                              |          |
|   | Aceleración de la gravedad                                                                                                                                                                                                                                                                                                                                                                                     | g                                    | 9,810                                                                                         | m/s             |                                                                                                | 0,97                       |                                                                                                                                                                                                                  |          |
|   | Altura del canal para Qmáximo                                                                                                                                                                                                                                                                                                                                                                                  | dn                                   | 0,470                                                                                         | m               |                                                                                                |                            | Relación calado a energía                                                                                                                                                                                        | H        |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                                                                               |                 | (w=Y/Ew) < 0,6                                                                                 | 0,07                       | específica                                                                                                                                                                                                       |          |
|   | Relación entre h1 y h2 (calado de ingreso                                                                                                                                                                                                                                                                                                                                                                      | n <sub>2</sub>                       | 17,000                                                                                        | Ì               | (w=Y/Ew) < 0.6<br>$L_2 = 2.03 \times B \times (2.828 \times \sqrt{(n_2 - 0.4)(1 - 0.4w)} +$    |                            | Longitud requerida para el                                                                                                                                                                                       | Π        |
|   | y calado de salida)                                                                                                                                                                                                                                                                                                                                                                                            |                                      |                                                                                               |                 | $+ 0.31 \text{ w} - 0.984 \text{ ar } \cos \sqrt{(0.4/n,)} + 0.065$                            | 7,80                       | vertedero                                                                                                                                                                                                        | L        |
|   | Coeficiente de corrección energía cinética                                                                                                                                                                                                                                                                                                                                                                     | α <sub>2</sub>                       | 1,400                                                                                         |                 |                                                                                                | 201                        | Determinación de la velocidad                                                                                                                                                                                    |          |
| _ | Coeficiente de corrección energía presiones                                                                                                                                                                                                                                                                                                                                                                    | α <sub>2</sub> `                     | 0,950                                                                                         | -               | V2 = $((2g/\alpha_2) (Ew - \alpha_2' x Ew/(2 x n_2)))^{0.5}$                                   | 3,64                       | en el extremo inferior del vertedro  Altura del calado de agua en el                                                                                                                                             | $\vdash$ |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                                                                               |                 | h1 = 0,5 x Ew                                                                                  | 0,49                       | Altura del calado de agua en el<br>vertedero al ingreso                                                                                                                                                          | 1        |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                    | 34,750                                                                                        |                 |                                                                                                |                            | Altura del calado de agua en el                                                                                                                                                                                  | T        |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                                                                               |                 | h2 = h1/n <sub>2</sub>                                                                         | 0,03                       | vertedero a la salida                                                                                                                                                                                            |          |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                                                                               |                 | d2 = Y + h2                                                                                    | 0,10                       | Calado de agua a la salida<br>del vertedero lateral                                                                                                                                                              |          |
|   | Relación calado a diámetro o ancho del                                                                                                                                                                                                                                                                                                                                                                         |                                      |                                                                                               |                 | U2 - 1 + 112                                                                                   | 0,10                       | Determinación del coeficiente                                                                                                                                                                                    | H        |
|   | colector                                                                                                                                                                                                                                                                                                                                                                                                       | d2/B                                 | 0,197                                                                                         |                 | K = f(d2/B)                                                                                    | 0,02                       | K1 para determinación caudal                                                                                                                                                                                     |          |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                                                                               |                 | 9/3 4/3                                                                                        |                            | Caudal a transportar despues del                                                                                                                                                                                 |          |
|   | Relación longitud ancho del canal                                                                                                                                                                                                                                                                                                                                                                              | L/B                                  | 15,6                                                                                          | 1               | Q = K x (D <sup>8/3</sup> x i <sup>1/2</sup> )/n                                               | 0,0430                     | vertedero lateral  Valor a verificar en la tabla de la                                                                                                                                                           | -        |
|   | Relación calado a energía específica                                                                                                                                                                                                                                                                                                                                                                           | W W                                  | 0,0719                                                                                        | 1               | n2 = f(L/B;w)                                                                                  | 13,50                      | figura 5.16 pag 199 Metcalf y Eddy                                                                                                                                                                               | 1        |
|   | Diámetro de la tubería para Q sanitario                                                                                                                                                                                                                                                                                                                                                                        | Ds                                   | 0,600                                                                                         | m               | , ,                                                                                            |                            | Relación par determinación de                                                                                                                                                                                    | T        |
|   | Caudal Sanitario máximo                                                                                                                                                                                                                                                                                                                                                                                        | QS                                   | 0,025                                                                                         | m³/s            | $K = QS \times n/(Ds^{8/3} \times i^{1/2})$                                                    | 0,0138                     | calado de agua en la tubería                                                                                                                                                                                     |          |
|   | Pendiente de la tubería o canal<br>Rugosidad de la tubería o canal                                                                                                                                                                                                                                                                                                                                             | i<br>n                               | 0,004                                                                                         | m/m             | -                                                                                              |                            |                                                                                                                                                                                                                  |          |
|   | Rugosidad de la tuberia o carial                                                                                                                                                                                                                                                                                                                                                                               | "                                    | 0,009                                                                                         |                 |                                                                                                |                            | Relación calado a diámetro ó                                                                                                                                                                                     | H        |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                                                                               |                 | Y/B = f(K)                                                                                     | 0,14                       | ancho                                                                                                                                                                                                            |          |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                                                                               |                 |                                                                                                |                            | calado de agua en la tubería circular                                                                                                                                                                            |          |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                                                                               |                 | Y <sub>2</sub> = (Y/B) x B                                                                     | 0,08                       | ó rectangular con caudal mínimo                                                                                                                                                                                  | -        |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                                                                               |                 | Δ = Y2 - Y                                                                                     | -0,06<br><mark>0,01</mark> | Desnivel a que se debe colocar la<br>t.sanitaria respescto a la t.principal                                                                                                                                      |          |
|   | K para relación (d/D) <sub>max</sub> = 94%                                                                                                                                                                                                                                                                                                                                                                     | Kmax                                 | 0,3353                                                                                        |                 |                                                                                                |                            | Caudal máximo a llevar en la tubería                                                                                                                                                                             | l        |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                                                                               |                 | Q-max = Kmax x Ds <sup>8/3</sup> x i <sup>1/2</sup> / n                                        | 0,6034                     | sanitaria                                                                                                                                                                                                        | L        |
|   | K1 para determinar área para máximo                                                                                                                                                                                                                                                                                                                                                                            | K1                                   | 0,7662                                                                                        |                 | 2.                                                                                             | 0.40                       | Velocidad con caudal máximo                                                                                                                                                                                      |          |
| _ | caudal  Cálculo con la ecuación de Babbit                                                                                                                                                                                                                                                                                                                                                                      |                                      |                                                                                               | l               | V-max-s = Q-max/(K1 x Ds <sup>2</sup> )                                                        | 2,19                       |                                                                                                                                                                                                                  | <u> </u> |
|   | Calculo con la ecuación de Babbit                                                                                                                                                                                                                                                                                                                                                                              |                                      |                                                                                               |                 |                                                                                                |                            | Calado de agua a caudal máximo                                                                                                                                                                                   | Γ        |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                                                                               |                 | Ymax = 0,94 x Ds                                                                               | 0,564                      | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                            |          |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                                                                               |                 |                                                                                                |                            | Calado de agua a la salida del                                                                                                                                                                                   |          |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                                                                               |                 | h2 = Ymax - Y <sub>2</sub>                                                                     | 0,48                       | vertedero lateral.                                                                                                                                                                                               | -        |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                                                                               |                 | h1 = H - Y <b>ó</b> h1 = 0,94 x D - Y                                                          | 0,4                        | Calado de agua al ingreso del<br>vertedero lateral.                                                                                                                                                              | 1        |
|   | Velocidad de aproximación con                                                                                                                                                                                                                                                                                                                                                                                  | Vmax                                 | 3,06                                                                                          | m/s             | ,                                                                                              |                            | Determinación de la longitud                                                                                                                                                                                     | Ī        |
|   | caudal máximo                                                                                                                                                                                                                                                                                                                                                                                                  |                                      |                                                                                               |                 | L = 7,55 x Vmax x d x log(h1/h2)                                                               | -0,91                      | del vertedero lateral                                                                                                                                                                                            |          |
| _ | Dimensionamiento de la transición Diámetro o base tubería ingreso                                                                                                                                                                                                                                                                                                                                              | BoD                                  | 0,5                                                                                           | m               | T                                                                                              |                            | Longitud de la transición                                                                                                                                                                                        |          |
|   | Diámetro o base tubería ingreso Diámetro o base tubería salida                                                                                                                                                                                                                                                                                                                                                 | Ds                                   | 0,6                                                                                           | m               | I = (B-Ds)/(tagθ)                                                                              | -1                         | Longitud de la tidilibilibili                                                                                                                                                                                    | 1        |
|   | Angulo de transición                                                                                                                                                                                                                                                                                                                                                                                           | θ                                    | 6                                                                                             | grados          | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                        |                            |                                                                                                                                                                                                                  | L        |
|   | Relación diámetro tubería versus radio de                                                                                                                                                                                                                                                                                                                                                                      |                                      | _                                                                                             |                 |                                                                                                |                            | Radio de curvatura en la tubería                                                                                                                                                                                 |          |
|   | curvatura recomendado Angulo entre el colector principal                                                                                                                                                                                                                                                                                                                                                       | r/Ds                                 | 2                                                                                             | 1               | r = 2 x Ds                                                                                     | 1,2                        | Longitud de la curva                                                                                                                                                                                             | ┝        |
|   | y la tubería sanitaria                                                                                                                                                                                                                                                                                                                                                                                         | ω                                    | 0                                                                                             | grados          | Ic = ω x (r + Ds/2)/180                                                                        | 0                          | Longitud de la curva                                                                                                                                                                                             | 1        |
|   | Coeficiente de pérdida por cambio de                                                                                                                                                                                                                                                                                                                                                                           |                                      |                                                                                               |                 |                                                                                                |                            | Pérdida de carga porcambio de                                                                                                                                                                                    | Γ        |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                | р                                    | 0                                                                                             | ļ               | $hf = p \times V-max-s^2/(2 \times g)$                                                         | 0,000                      | dirección en el interior del colector                                                                                                                                                                            | L        |
|   | dirección según el ángulo de giro                                                                                                                                                                                                                                                                                                                                                                              |                                      |                                                                                               |                 | $i = (hf + \Delta)/(I + Ic)$                                                                   | -1,40%                     | Pendiente en el canal de transición<br>por cambio de dirección y desnivel                                                                                                                                        | 1        |
|   | dirección según el ángulo de giro                                                                                                                                                                                                                                                                                                                                                                              |                                      |                                                                                               |                 | . · (iii · Δρ(i · 10)                                                                          | 1,70/0                     | For common de direction y destrivel                                                                                                                                                                              | _        |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                | 1; ALV 13                            | }                                                                                             |                 |                                                                                                |                            |                                                                                                                                                                                                                  |          |
|   | VERTEDERO INTERCEPTOR 11 - dt1 Diámetro o ancho de la tubería                                                                                                                                                                                                                                                                                                                                                  | DóB                                  | 1,100                                                                                         | m               |                                                                                                |                            | O d - l                                                                                                                                                                                                          | 1        |
|   | VERTEDERO INTERCEPTOR 11 - dt1 Diâmetro o ancho de la tubería Pendiente de la tubería o canal                                                                                                                                                                                                                                                                                                                  | D ó B<br>i                           | 1,100<br>0,004                                                                                | m<br>m/m        | Q-max = Kmax x D <sup>8/3</sup> x i <sup>1/2</sup> / n                                         | 3,04                       | Caudal máximo para canal                                                                                                                                                                                         |          |
|   | VERTEDERO INTERCEPTOR 11 - dt1 Diámetro o ancho de la tubería Pendiente de la tubería o canal Rugosidad de la tubería o canal                                                                                                                                                                                                                                                                                  | D ó B<br>i<br>n                      | 1,100<br>0,004<br>0,009                                                                       |                 | Q-max = Kmax x D <sup>8/3</sup> x i <sup>1/2</sup> / n                                         | 3,04                       | caudai maximo para canai<br>circular                                                                                                                                                                             |          |
|   | VERTEDERO INTERCEPTOR 11 - dt1 Diâmetro o ancho de la tubería Pendiente de la tubería o canal                                                                                                                                                                                                                                                                                                                  | D ó B<br>i                           | 1,100<br>0,004                                                                                |                 | Q-max = Kmax x D <sup>8/3</sup> x i <sup>1/2</sup> / n                                         | 0,93                       |                                                                                                                                                                                                                  |          |
|   | VERTEDERO INTERCEPTOR 11 - dt1 Diâmetro o ancho de la tubería Pendiente de la tubería o canal Rugosidad de la tubería o canal K para relación (d/D) <sub>max</sub> = 94% K1 para calcular área para Qmax                                                                                                                                                                                                       | D ó B<br>i<br>n<br>Kmax              | 1,100<br>0,004<br>0,009<br>0,3353                                                             |                 | Q-max = Kmax x D <sup>83</sup> x i <sup>1/2</sup> / n  Am = K1 x D <sup>2</sup>                |                            | circular                                                                                                                                                                                                         |          |
|   | VERTEDERO INTERCEPTOR 11 - dt1 Diámetro o ancho de la tubería Pendiente de la tubería o canal Rugosidad de la tubería o canal K para relación (d/D) <sub>max</sub> = 94% K1 para calcular área para Qmax Caudal Pluvial Maximo para un período de                                                                                                                                                              | D 6 B i n Kmax K1                    | 1,100<br>0,004<br>0,009<br>0,3353<br>0,7662                                                   | m/m             | Am = K1 x D <sup>2</sup>                                                                       | 0,93                       | circular  Area de sección transversal para caudal máximo tub. Circular Velocidad transversal                                                                                                                     |          |
|   | VERTEDERO INTERCEPTOR 11 - dtr Diámetro o ancho de la tuberia Pendiente de la tuberia o canal Rugosidad de la tuberia o canal K para relación (d/D) <sub>max</sub> 94% K1 para calcular área para Qmax Caudal Pluvial Maximo para un período de retorno de 5 años                                                                                                                                              | D 6 B i n Kmax K1                    | 1,100<br>0,004<br>0,009<br>0,3353<br>0,7662                                                   | m/m             |                                                                                                |                            | circular  Area de sección transversal para caudal máximo tub. Circular                                                                                                                                           |          |
|   | VERTEDERO INTERCEPTOR 11 - dtri Diámetro o ancho de la tubería Pendiente de la tubería o canal Rugosidad de la tubería o canal K para relación (d/D) <sub>max</sub> = 94% K1 para calcular área para Qmax Caudal Pluvial Maximo para un período de retorno de 5 años Diámetro o ancho de la tubería                                                                                                            | D 6 B i n Kmax K1                    | 1,100<br>0,004<br>0,009<br>0,3353<br>0,7662<br>2560,7700<br>1,100                             | m/m             | Am = K1 x D <sup>2</sup> Vmax = Qmax/A                                                         | 0,93                       | circular  Area de sección transversal para caudal máximo tub. Circular  Velocidad transversal con caudal máximo                                                                                                  |          |
|   | VERTEDERO INTERCEPTOR 11 - dtr Diámetro o ancho de la tuberia Pendiente de la tuberia o canal Rugosidad de la tuberia o canal K para relación (d/D) <sub>max</sub> 94% K1 para calcular área para Qmax Caudal Pluvial Maximo para un período de retorno de 5 años                                                                                                                                              | D 6 B i n Kmax K1  QP D 6 B          | 1,100<br>0,004<br>0,009<br>0,3353<br>0,7662                                                   | m/m             | Am = K1 x D <sup>2</sup>                                                                       | 0,93                       | circular  Area de sección transversal para caudal máximo tub. Circular Velocidad transversal                                                                                                                     |          |
|   | VERTEDERO INTERCEPTOR 11 - dt1 Diâmetro o ancho de la tubería Pendiente de la tubería o canal Rugosidad de la tubería o canal K para relación (d/D) <sub>max</sub> = 94% K1 para calcular área para Qmax Caudal Pluvial Maximo para un período de retorno de 5 años Diâmetro o ancho de la tubería Pendiente de la tubería o canal                                                                             | D 6 B i n Kmax K1  QP D 6 B i        | 1,100<br>0,004<br>0,009<br>0,3353<br>0,7662<br>2560,7700<br>1,100<br>0,004                    | m/m             | Am = K1 x D <sup>2</sup> Vmax = Qmax/A                                                         | 0,93<br>3,28<br>3,04       | circular  Area de sección transversal para caudal máximo tub. Circular  Velocidad transversal con caudal máximo  Caudal máximo para canal                                                                        |          |
|   | VERTEDERO INTERCEPTOR 11 - dtr Diámetro o ancho de la tubería Pendiente de la tubería o canal Rugosidad de la tubería o canal K para relación (d/D) <sub>max</sub> = 94% K1 para calcular área para Qmax  Caudal Pluvial Maximo para un período de retorno de 5 años Diámetro o ancho de la tubería Pendiente de la tubería o canal Rugosidad de la tubería o canal                                            | D 6 B i n Kmax K1  QP D 6 B i n      | 1,100<br>0,004<br>0,009<br>0,3353<br>0,7662<br>2560,7700<br>1,100<br>0,004<br>0,009           | m/m             | Am = K1 x D <sup>2</sup> Vmax = Qmax/A  Q-max = Kmax x D <sup>8/3</sup> x i <sup>1/2</sup> / n | 0,93                       | circular  Area de sección transversal para caudal máximo tub. Circular  Velocidad transversal con caudal máximo  Caudal máximo para canal circular  Area de sección transversal                                  |          |
|   | VERTEDERO INTERCEPTOR 11 - dtr Diámetro o ancho de la tubería Pendiente de la tubería o canal Rugosidad de la tubería o canal K para relación (d/D) <sub>max</sub> = 94% K1 para calcular área para Qmax  Caudal Pluvial Maximo para un período de retorno de 5 años Diámetro o ancho de la tubería Pendiente de la tubería o canal Rugosidad de la tubería o canal K para relación (d/D) <sub>max</sub> = 94% | D 6 B i n Kmax K1  QP D 6 B i n Kmax | 1,100<br>0,004<br>0,009<br>0,3353<br>0,7662<br>2560,7700<br>1,100<br>0,004<br>0,009<br>0,3353 | m/m             | Am = K1 x D <sup>2</sup> Vmax = Qmax/A                                                         | 0,93<br>3,28<br>3,04       | circular  Area de sección transversal para caudal máximo tub. Circular  Velocidad transversal con caudal máximo  Caudal máximo para canal circular  Area de sección transversal para caudal máximo tub. Circular |          |
|   | VERTEDERO INTERCEPTOR 11 - dtr Diámetro o ancho de la tubería Pendiente de la tubería o canal Rugosidad de la tubería o canal K para relación (d/D) <sub>max</sub> = 94% K1 para calcular área para Qmax  Caudal Pluvial Maximo para un período de retorno de 5 años Diámetro o ancho de la tubería Pendiente de la tubería o canal Rugosidad de la tubería o canal K para relación (d/D) <sub>max</sub> = 94% | D 6 B i n Kmax K1  QP D 6 B i n Kmax | 1,100<br>0,004<br>0,009<br>0,3353<br>0,7662<br>2560,7700<br>1,100<br>0,004<br>0,009<br>0,3353 | m/m             | Am = K1 x D <sup>2</sup> Vmax = Qmax/A  Q-max = Kmax x D <sup>8/3</sup> x i <sup>1/2</sup> / n | 0,93<br>3,28<br>3,04       | circular  Area de sección transversal para caudal máximo tub. Circular  Velocidad transversal con caudal máximo  Caudal máximo para canal circular  Area de sección transversal                                  |          |

|      | DIMENSIONAMIENTO                                                              | DE LOS V            | ERTEDER         | OS LATE           | RALES DE EXCESOS PARA CANALES (                                                                                                    | CIRCULARES C   | RECTANGULARES                                                            |                   |
|------|-------------------------------------------------------------------------------|---------------------|-----------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------|-------------------|
| ASO  | DATOS                                                                         | SIMBOLO             | VALOR           | UNIDAD            | CRITERIO                                                                                                                           | CALCULO        | RESULTADO                                                                | UNIDAD            |
| 8    |                                                                               |                     |                 |                   | 0.000                                                                                                                              |                | Caudal máximo a transportar                                              | 3.                |
| 9    |                                                                               |                     |                 |                   | Q-max = Kmax x B <sup>8/3</sup> x i <sup>1/2</sup> / n                                                                             | canal circular | para tubería rectangular  Velocidad transversal                          | m <sup>3</sup> /s |
|      |                                                                               |                     |                 |                   | Vmax = Q-max/(B x H)                                                                                                               | canal circular | con caudal máximo                                                        | m/s               |
| 10   | Caudal Sanitario Medio                                                        | Qs                  | 123,650         | It/s              |                                                                                                                                    |                | Caudal máximo a transportar en                                           | 2                 |
| 11   | Relación de dilución entre 2,5 y 5                                            | R                   | 3,000           |                   | QS = R x Qs/1000                                                                                                                   | 0,371          | tubería sanitaria Relación par determinación de                          | m <sup>3</sup> /s |
|      |                                                                               |                     |                 |                   | $K = QS \times n/(D^{8/3} \times i^{1/2})$                                                                                         | 0,0409         | calado de agua en la tubería                                             |                   |
| 12   |                                                                               |                     |                 |                   |                                                                                                                                    |                | Relación calado a diámetro ó                                             |                   |
| 10   |                                                                               |                     |                 |                   | Y/B = f(K)                                                                                                                         | 0,24           | ancho                                                                    |                   |
| 13   |                                                                               |                     |                 |                   | Y = (Y/B) x B                                                                                                                      | 0.26           | calado de agua en la tubería circular<br>ó rectangular con caudal mínimo | m                 |
| 14   | Determinación del coeficiente K1                                              |                     |                 |                   | . ()                                                                                                                               | 5,25           | Area de sección transversal                                              |                   |
|      |                                                                               | K1 = f(Y/B)         | 0,14            |                   | $A = K1 \times D^2$                                                                                                                | 0,1754         | en tubería circual                                                       | m <sup>2</sup>    |
| 15   |                                                                               |                     |                 |                   | V 0/4                                                                                                                              | 0.44           | Velocidad transversal en la                                              |                   |
| 16   |                                                                               |                     |                 |                   | V = Q/A                                                                                                                            | 2,11           | tubería circual con caudal mínimo<br>Velocidad transversal en la tubería |                   |
|      |                                                                               |                     |                 | 2077,17           | $V = Q/(B \times Y)$                                                                                                               | canal circular | rectangular con caudal mínimo                                            | m                 |
|      | Cálculo con la ecuación de Ackers                                             |                     |                 |                   |                                                                                                                                    |                |                                                                          |                   |
| 17   | Velocidad con caudal máximo                                                   | Vn                  | 3,277           | m/s               | F                                                                                                                                  |                | Cálculo de la energía específica                                         |                   |
|      | Coeficiente corrección energía cinetica  Aceleración de la gravedad           | α <sub>1</sub><br>g | 1,200<br>9,810  | m/s               | $Ew = \alpha \times Vn^2/2g + (dn - Y)$                                                                                            | 1,42           |                                                                          | m                 |
|      | Altura del canal para Qmáximo                                                 | dn                  | 1,030           | m                 |                                                                                                                                    | .,             |                                                                          |                   |
| 18   |                                                                               |                     |                 |                   |                                                                                                                                    |                | Relación calado a energía                                                |                   |
| 19   | Relación entre h1 y h2 (calado de ingreso                                     | n                   | 16,000          |                   | (w=Y/Ew) < 0.6<br>$L_2 = 2.03 \times B \times (2.828 \times \sqrt{(n_2 - 0.4)(1 - 0.4w)} +$                                        | 0,19           | específica<br>Longitud requerida para el                                 | -                 |
| 19   | y calado de salida)                                                           | n <sub>2</sub>      | 16,000          |                   | $L_2 = 2.03 \times B \times (2.828 \times \sqrt{(n_2 - 0.4)(1 - 0.4 w)} + 0.31 w - 0.984 \text{ ar cos } \sqrt{(0.4/n_1)} + 0.065$ | 15,41          | vertedero                                                                | m                 |
| 20   | Coeficiente de corrección energía cinética                                    | $\alpha_2$          | 1,400           |                   | + 0.31 W = 0.704 W WS \(\sqrt{(0.4/11, ) + 0.005}\)                                                                                | 10,41          | Determinación de la velocidad                                            |                   |
|      | Coeficiente de corrección energía presiones                                   | α <sub>2</sub> `    | 0,950           |                   | V2 = $((2g/\alpha_2) (Ew - \alpha_2' \times Ew/(2 \times n_2)))^{0.5}$                                                             | 4,40           | en el extremo inferior del vertedro                                      | m/s               |
| 21   |                                                                               |                     |                 |                   |                                                                                                                                    |                | Altura del calado de agua en el                                          |                   |
| 22   |                                                                               |                     |                 |                   | h1 = 0,5 x Ew                                                                                                                      | 0,71           | vertedero al ingreso Altura del calado de agua en el                     | m                 |
| 22   |                                                                               |                     |                 |                   | h2 = h1/n <sub>2</sub>                                                                                                             | 0,04           | vertedero a la salida                                                    | m                 |
| 23   |                                                                               |                     |                 |                   | -                                                                                                                                  | -7.            | Calado de agua a la salida                                               |                   |
|      |                                                                               |                     |                 |                   | d2 = Y + h2                                                                                                                        | 0,31           | del vertedero lateral                                                    | m                 |
| 24   | Relación calado a diámetro o ancho del                                        | d2/B                | 0,280           |                   | V = f(d2/P)                                                                                                                        | 0.05           | Determinación del coeficiente                                            |                   |
| 25   | colector                                                                      | QZ/B                | 0,260           |                   | K = f(d2/B)                                                                                                                        | 0,05           | K1 para determinación caudal<br>Caudal a transportar despues del         |                   |
|      |                                                                               |                     |                 |                   | $Q = K \times (D^{8/3} \times i^{1/2})/n$                                                                                          | 0,4836         | vertedero lateral                                                        | m <sup>3</sup> /s |
| 26   | Relación longitud ancho del canal                                             | L/B                 | 14,01           |                   |                                                                                                                                    |                | Valor a verificar en la tabla de la                                      |                   |
| 27   | Relación calado a energía específica  Diámetro de la tubería para Q sanitario | W<br>Ds             | 0,1856<br>0,600 | m                 | n2 = f(L/B;w)                                                                                                                      | 15,00          | figura 5.16 pag 199 Metcalf y Eddy<br>Relación par determinación de      |                   |
| 21   | Caudal Sanitario máximo                                                       | QS                  | 0,371           | m <sup>3</sup> /s | $K = QS \times n/(Ds^{8/3} \times i^{1/2})$                                                                                        | 0,2074         | calado de agua en la tubería                                             |                   |
|      | Pendiente de la tubería o canal                                               | i                   | 0,004           | m/m               | 20(20,                                                                                                                             |                | Ü                                                                        |                   |
|      | Rugosidad de la tubería o canal                                               | n                   | 0,009           |                   |                                                                                                                                    |                |                                                                          |                   |
| 28   |                                                                               |                     |                 |                   | Y/B = f(K)                                                                                                                         | 0,59           | Relación calado a diámetro ó<br>ancho                                    | m                 |
| 29   |                                                                               |                     |                 |                   | 17B = 1(K)                                                                                                                         | 0,59           | calado de agua en la tubería circular                                    |                   |
|      |                                                                               |                     |                 |                   | $Y_2 = (Y/B) \times B$                                                                                                             | 0,35           | ó rectangular con caudal mínimo                                          | m/s               |
| 30   |                                                                               |                     |                 |                   |                                                                                                                                    | 0,03           | Desnivel a que se debe colocar la                                        |                   |
| 0.1  | K para relación (d/D) <sub>max</sub> = 94%                                    |                     | 0.0050          |                   | Δ = Y2 - Y                                                                                                                         | 0,09           | t.sanitaria respescto a la t.principal                                   |                   |
| 31   | n para relacion (d/D) <sub>max</sub> = 94%                                    | Kmax                | 0,3353          |                   | Q-max = Kmax x Ds <sup>8/3</sup> x i <sup>1/2</sup> / n                                                                            | 0,5996         | Caudal máximo a llevar en la tubería<br>sanitaria                        | m <sup>3</sup> /s |
| 32   | K1 para determinar área para máximo                                           | K1                  | 0,7662          |                   | Q-IIIAX - KIIIAX X DS X I 7 II                                                                                                     | 0,000          | Velocidad con caudal máximo                                              | 111 /3            |
|      | caudal                                                                        |                     |                 |                   | V-max-s = Q-max/(K1 x Ds $^2$ )                                                                                                    | 2,17           |                                                                          | m/s               |
| 00   | Cálculo con la ecuación de Babbit                                             | 1                   | ı               | 1                 |                                                                                                                                    | 1 1            | Only de de serve e soudel es éviere                                      | ı                 |
| 33   |                                                                               |                     |                 |                   | Ymax = 0,94 x Ds                                                                                                                   | 0,564          | Calado de agua a caudal máximo                                           | m                 |
| 34   |                                                                               |                     |                 |                   | Tillax 0,01 x B0                                                                                                                   | 0,001          | Calado de agua a la salida del                                           |                   |
|      |                                                                               |                     |                 |                   | h2 = Ymax - Y <sub>2</sub>                                                                                                         | 0,21           | vertedero lateral.                                                       | m                 |
| 35   |                                                                               |                     |                 |                   | M-11 V 4 M 204 D V                                                                                                                 | 0.77           | Calado de agua al ingreso del                                            |                   |
| 36   | Velocidad de aproximación con                                                 | Vmax                | 3,28            | m/s               | h1 = H - Y <b>ó</b> h1 = 0,94 x D - Y                                                                                              | 0,77           | vertedero lateral.  Determinación de la longitud                         | m                 |
| 20   | caudal máximo                                                                 | ·····               | 5,20            | 3                 | L = 7,55 x Vmax x d x log(h1/h2)                                                                                                   | 15,37          | del vertedero lateral                                                    | m                 |
|      | Dimensionamiento de la transición                                             |                     |                 |                   |                                                                                                                                    |                |                                                                          |                   |
| 37   | Diámetro o base tubería ingreso                                               | B o D               | 1,1             | m                 | I = (D De)((==0)                                                                                                                   | 40             | Longitud de la transición                                                |                   |
|      | Diámetro o base tubería salida  Angulo de transición                          | Ds<br>θ             | 0,6<br>6        | m<br>grados       | $I = (B-Ds)/(tag\theta)$                                                                                                           | 4,8            |                                                                          | m                 |
| 38   | Relación diámetro tubería versus radio de                                     | U                   | ,               | gradus            |                                                                                                                                    |                | Radio de curvatura en la tubería                                         |                   |
|      | curvatura recomendado                                                         | r/Ds                | 2               |                   | r = 2 x Ds                                                                                                                         | 1,2            |                                                                          |                   |
| 39   | Angulo entre el colector principal                                            |                     | 00.07:00        |                   | 1                                                                                                                                  | 0.55           | Longitud de la curva                                                     |                   |
| 40   | y la tubería sanitaria Coeficiente de pérdida por cambio de                   | ω                   | 99,874833       | grados            | Ic = ω x (r + Ds/2)/180                                                                                                            | 0,83           | Pérdida de carga porcambio de                                            | m                 |
| -+-0 | dirección según el ángulo de giro                                             | р                   | 0               |                   | $hf = p \times V-max-s^2/(2 \times g)$                                                                                             | 0,000          | dirección en el interior del colector                                    | m                 |
| 41   | 5 51 7 7 7 7                                                                  | r                   |                 |                   | F                                                                                                                                  |                | Pendiente en el canal de transición                                      |                   |
|      | i                                                                             | 1                   | I               |                   | $i = (hf + \Delta)/(I + Ic)$                                                                                                       | 1,60%          | por cambio de dirección y desnivel                                       | %                 |

|                                              |                                                                                                                                                                                                                                                                                                                                                                                                           | PARA CANAL                                       | ES CIRCUL                                      | ARES O R                                         | ECTANGULARES DOS TUBERIAS DE LI                                                                                                                                                                                                                                           | EGADA                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| PASO                                         | DATOS                                                                                                                                                                                                                                                                                                                                                                                                     | SIMBOLO                                          | VALOR                                          | UNIDAD                                           | CRITERIO                                                                                                                                                                                                                                                                  | CALCULO                                                                    | RESULTADO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | UNIDAD                                           |
|                                              | VERTEDERO SAN CRISTOBAL Iv24                                                                                                                                                                                                                                                                                                                                                                              |                                                  |                                                |                                                  |                                                                                                                                                                                                                                                                           |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |
| 1                                            | Diámetro o ancho de la tubería UNO                                                                                                                                                                                                                                                                                                                                                                        | DóB                                              | 0,600                                          | m                                                |                                                                                                                                                                                                                                                                           | 1                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                |
|                                              | Altura del canal recatangular                                                                                                                                                                                                                                                                                                                                                                             | Н                                                | 0,000                                          | m                                                | 010 410                                                                                                                                                                                                                                                                   |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |
|                                              | Pendiente de la tubería o canal UNO                                                                                                                                                                                                                                                                                                                                                                       | i                                                | 0,0050                                         | m/m                                              | Q-max1 = Kmax x D <sup>8/3</sup> x i <sup>1/2</sup> / n                                                                                                                                                                                                                   | 0,67                                                                       | Caudal máximo para canal                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                  |
|                                              | Rugosidad de la tubería o canal UNO                                                                                                                                                                                                                                                                                                                                                                       | n                                                | 0,009                                          |                                                  |                                                                                                                                                                                                                                                                           |                                                                            | circular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | m³/s                                             |
|                                              | K para relación (d/D) <sub>max</sub> = 94%                                                                                                                                                                                                                                                                                                                                                                | Kmax                                             | 0,3353                                         |                                                  |                                                                                                                                                                                                                                                                           |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |
| 2                                            | Diámetro o ancho de la tubería DOS  Altura del canal recatangular                                                                                                                                                                                                                                                                                                                                         | D ó B<br>H                                       | 0,270<br>0,000                                 | m                                                | 1                                                                                                                                                                                                                                                                         |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                |
|                                              | Pendiente de la tubería o canal DOS                                                                                                                                                                                                                                                                                                                                                                       | i                                                | 0,000                                          | m<br>m/m                                         | Q-max2 = Kmax x D <sup>8/3</sup> x i <sup>1/2</sup> / n                                                                                                                                                                                                                   | 0,07                                                                       | Caudal máximo para canal                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                  |
|                                              | Rugosidad de la tubería o canal DOS                                                                                                                                                                                                                                                                                                                                                                       | n                                                | 0,005                                          | 111/111                                          | Q-max2 = Kmax x D*** x i***/ n                                                                                                                                                                                                                                            | 0,07                                                                       | caudai maximo para canai<br>circular                                                                                                                                                                                                                                                                                                                                                                                                                                                      | m <sup>3</sup> /s                                |
|                                              | K para relación (d/D) <sub>max</sub> = 94%                                                                                                                                                                                                                                                                                                                                                                | Kmax                                             | 0,3353                                         |                                                  |                                                                                                                                                                                                                                                                           |                                                                            | Circulai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | III /S                                           |
| 3                                            | Caudal pluvial a transportar las dos                                                                                                                                                                                                                                                                                                                                                                      | Killdx                                           | 0,3333                                         |                                                  |                                                                                                                                                                                                                                                                           |                                                                            | Caudal máximo a transportar                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                |
| 3                                            | tuberías para un período de 5 años                                                                                                                                                                                                                                                                                                                                                                        | Qmax-d                                           | 439,21                                         | It/s                                             | Qmax = Qmax1 + Qmax2                                                                                                                                                                                                                                                      | 0,75                                                                       | las dos tuberías                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | m <sup>3</sup> /s                                |
| 4                                            | Diámetro o ancho de la tubería                                                                                                                                                                                                                                                                                                                                                                            | D ó B                                            | 0,600                                          | m                                                | Gillax - Gillax I - Gillaxz                                                                                                                                                                                                                                               | 0,70                                                                       | ido dos tabelido                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 111 /5                                           |
| "                                            | Pendiente de la tubería o canal                                                                                                                                                                                                                                                                                                                                                                           | i                                                | 0,0067                                         | m/m                                              | Q-max = Kmax x D <sup>8/3</sup> x i <sup>1/2</sup> / n                                                                                                                                                                                                                    | 0,78                                                                       | Caudal máximo para canal                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                  |
|                                              | Rugosidad de la tubería o canal                                                                                                                                                                                                                                                                                                                                                                           | n                                                | 0,009                                          |                                                  | Q-IIIax - KIIIax x D x 1 / II                                                                                                                                                                                                                                             | 0,70                                                                       | circular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | m <sup>3</sup> /s                                |
|                                              | K para relación (d/D) <sub>max</sub> = 94%                                                                                                                                                                                                                                                                                                                                                                | Kmax                                             | 0,3353                                         |                                                  |                                                                                                                                                                                                                                                                           |                                                                            | Girculai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 111 /3                                           |
| 5                                            | K1 para calcular área para Qmax                                                                                                                                                                                                                                                                                                                                                                           | K1                                               | 0,7662                                         |                                                  |                                                                                                                                                                                                                                                                           | 0,28                                                                       | Area de sección transversal                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
|                                              | p                                                                                                                                                                                                                                                                                                                                                                                                         |                                                  | .,                                             |                                                  | Am = K1 x D <sup>2</sup>                                                                                                                                                                                                                                                  | .,                                                                         | para caudal máximo tub. Circular                                                                                                                                                                                                                                                                                                                                                                                                                                                          | m <sup>2</sup>                                   |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |                                                |                                                  |                                                                                                                                                                                                                                                                           |                                                                            | Velocidad transversal                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                  |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |                                                |                                                  | Vmax = Qmax/A                                                                                                                                                                                                                                                             | 2,82                                                                       | con caudal máximo                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | m/s                                              |
| 6                                            | Altura del canal                                                                                                                                                                                                                                                                                                                                                                                          | Н                                                | 0,000                                          | m                                                |                                                                                                                                                                                                                                                                           |                                                                            | Determinación de Kmax para                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
|                                              | Relación H/B                                                                                                                                                                                                                                                                                                                                                                                              | H/B                                              | 0,000                                          |                                                  | Kmax = f(H/B)                                                                                                                                                                                                                                                             | canal circular                                                             | canales rectangulares                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                  |
| 7                                            |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |                                                |                                                  |                                                                                                                                                                                                                                                                           |                                                                            | Caudal máximo a transportar                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |                                                |                                                  | Q-max = Kmax x B <sup>8/3</sup> x i <sup>1/2</sup> / n                                                                                                                                                                                                                    | canal circular                                                             | para tubería rectangular                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | m <sup>3</sup> /s                                |
| 8                                            |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |                                                | 1                                                |                                                                                                                                                                                                                                                                           | l                                                                          | Velocidad transversal                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | l .                                              |
| ⊢ _ ⊢                                        | Country Construction 1                                                                                                                                                                                                                                                                                                                                                                                    | 0-                                               | 40.000                                         | 11.                                              | Vmax = Q-max/(B x H)                                                                                                                                                                                                                                                      | canal circular                                                             | con caudal máximo                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | m/s                                              |
| 9                                            | Caudal Sanitario Medio                                                                                                                                                                                                                                                                                                                                                                                    | Qs                                               | 16,060                                         | It/s                                             | 00 . D.: 0.:4000                                                                                                                                                                                                                                                          | 0.040                                                                      | Caudal máximo a transportar en                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.                                               |
| 10                                           | Relación de dilución entre 2,5 y 5                                                                                                                                                                                                                                                                                                                                                                        | R                                                | 3,000                                          | <del>                                     </del> | QS = R x Qs/1000                                                                                                                                                                                                                                                          | 0,048                                                                      | tubería sanitaria                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | m³/s                                             |
| 10                                           |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |                                                | 1                                                | K = 00                                                                                                                                                                                                                                                                    | 0.0007                                                                     | Relación par determinación de                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  |
| 11                                           |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |                                                | -                                                | $K = QS \times n/(D^{8/3} \times i^{1/2})$                                                                                                                                                                                                                                | 0,0207                                                                     | calado de agua en la tubería                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del>                                     </del> |
| 11                                           |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |                                                |                                                  | V/P = f(V)                                                                                                                                                                                                                                                                | 0.17                                                                       | Relación calado a diámetro ó                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |
| 12                                           |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |                                                | -                                                | Y/B = f(K)                                                                                                                                                                                                                                                                | 0,17                                                                       | ancho<br>calado de agua en la tubería circular                                                                                                                                                                                                                                                                                                                                                                                                                                            | <del>                                     </del> |
| 12                                           |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |                                                |                                                  | Y = (Y/B) x B                                                                                                                                                                                                                                                             | 0,10                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | m                                                |
| 13                                           | Determinación del coeficiente K1                                                                                                                                                                                                                                                                                                                                                                          |                                                  |                                                |                                                  | f = (f/B) X B                                                                                                                                                                                                                                                             | 0,10                                                                       | ó rectangular con caudal mínimo  Area de sección transversal                                                                                                                                                                                                                                                                                                                                                                                                                              | m                                                |
| 13                                           | Determinación del coenciente K i                                                                                                                                                                                                                                                                                                                                                                          | K1 = f(Y/B)                                      | 0,09                                           |                                                  | A = K1 x D <sup>2</sup>                                                                                                                                                                                                                                                   | 0,0319                                                                     | en tubería circual                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | m <sup>2</sup>                                   |
| 14                                           |                                                                                                                                                                                                                                                                                                                                                                                                           | K1 = I(17b)                                      | 0,03                                           |                                                  | A-KIXD                                                                                                                                                                                                                                                                    | 0,0319                                                                     | Velocidad transversal en la                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100                                              |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |                                                |                                                  | V = Q/A                                                                                                                                                                                                                                                                   | 1,51                                                                       | tubería circual con caudal mínimo                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                  |
| 15                                           |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |                                                |                                                  |                                                                                                                                                                                                                                                                           | .,                                                                         | Velocidad transversal en la tubería                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                  |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |                                                | 340,01                                           | V = Q/(B x Y)                                                                                                                                                                                                                                                             | canal circular                                                             | rectangular con caudal mínimo                                                                                                                                                                                                                                                                                                                                                                                                                                                             | m                                                |
|                                              | Cálculo con la ecuación de Ackers                                                                                                                                                                                                                                                                                                                                                                         |                                                  |                                                | 83,14                                            |                                                                                                                                                                                                                                                                           |                                                                            | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                  |
| 16                                           | Velocidad con caudal máximo                                                                                                                                                                                                                                                                                                                                                                               | Vn                                               | 2,825                                          | m/s                                              |                                                                                                                                                                                                                                                                           |                                                                            | Cálculo de la energía específica                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  |
|                                              | Coeficiente corrección energía cinetica                                                                                                                                                                                                                                                                                                                                                                   | $\alpha_1$                                       | 1,200                                          |                                                  | Ew = $\alpha \times Vn^2/2g + (dn - Y)$                                                                                                                                                                                                                                   |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |
| l 1                                          | Aceleración de la gravedad                                                                                                                                                                                                                                                                                                                                                                                | g                                                | 9,810                                          | m/s                                              | g (,                                                                                                                                                                                                                                                                      | 0,95                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | m                                                |
|                                              | Altura del canal para Qmáximo                                                                                                                                                                                                                                                                                                                                                                             | dn                                               | 0,560                                          | m                                                |                                                                                                                                                                                                                                                                           |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |
| 17                                           | •                                                                                                                                                                                                                                                                                                                                                                                                         |                                                  |                                                |                                                  |                                                                                                                                                                                                                                                                           |                                                                            | Relación calado a energía                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |                                                |                                                  | (w=Y/Ew) < 0,6                                                                                                                                                                                                                                                            | 0,11                                                                       | específica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| 18                                           | Relación entre h1 y h2 (calado de ingreso                                                                                                                                                                                                                                                                                                                                                                 | n <sub>2</sub>                                   | 9,200                                          |                                                  | (w=Y/Ew) < 0.6<br>$L_2 = 2.03 \times B \times (2.828 \times \sqrt{(n_2 - 0.4)(1 - 0.4w)} +$                                                                                                                                                                               |                                                                            | Longitud requerida para el                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
|                                              | y calado de salida)                                                                                                                                                                                                                                                                                                                                                                                       |                                                  |                                                |                                                  | + 0.31 w - 0.984 ar cos $\sqrt{(0.4/n,)}$ + 0.065                                                                                                                                                                                                                         | 5,70                                                                       | vertedero                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | m                                                |
| 19                                           | Coeficiente de corrección energía cinética                                                                                                                                                                                                                                                                                                                                                                | $\alpha_2$                                       | 1,400                                          |                                                  | • • • •                                                                                                                                                                                                                                                                   |                                                                            | Determinación de la velocidad                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  |
|                                              | Coeficiente de corrección energía presiones                                                                                                                                                                                                                                                                                                                                                               | α2`                                              | 0,950                                          |                                                  | $V2 = ((2g/\alpha_2) (Ew - \alpha_2' \times Ew/(2 \times n_2)))^{0.5}$                                                                                                                                                                                                    | 3,55                                                                       | en el extremo inferior del vertedro                                                                                                                                                                                                                                                                                                                                                                                                                                                       | m/s                                              |
| 20                                           |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |                                                |                                                  |                                                                                                                                                                                                                                                                           |                                                                            | Altura del calado de agua en el                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |                                                |                                                  | h1 = 0,5 x Ew                                                                                                                                                                                                                                                             | 0,47                                                                       | vertedero al ingreso                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | m                                                |
| 21                                           |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |                                                |                                                  |                                                                                                                                                                                                                                                                           |                                                                            | Altura del calado de agua en el                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |                                                |                                                  | h2 = h1/n <sub>2</sub>                                                                                                                                                                                                                                                    | 0,05                                                                       | vertedero a la salida                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | m                                                |
| 22                                           |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |                                                |                                                  |                                                                                                                                                                                                                                                                           |                                                                            | Calado de agua a la salida                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |                                                |                                                  | d2 = Y + h2                                                                                                                                                                                                                                                               | 0,15                                                                       | del vertedero lateral                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | m                                                |
| 23                                           | Relación calado a diámetro o ancho del                                                                                                                                                                                                                                                                                                                                                                    |                                                  |                                                |                                                  |                                                                                                                                                                                                                                                                           |                                                                            | Determinación del coeficiente                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  |
|                                              | colector                                                                                                                                                                                                                                                                                                                                                                                                  | d2/B                                             | 0,256                                          |                                                  | K = f(d2/B)                                                                                                                                                                                                                                                               | 0,04                                                                       | K1 para determinación caudal                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |
| 24                                           |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |                                                | 1                                                | g 10 (F 9/2 - 4/2)                                                                                                                                                                                                                                                        |                                                                            | Caudal a transportar despues del                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ٠.                                               |
| 25                                           | Pologión los situal escales del escal                                                                                                                                                                                                                                                                                                                                                                     | I /D                                             | 0.5                                            | -                                                | Q = K x (D <sup>8/3</sup> x i <sup>1/2</sup> )/n                                                                                                                                                                                                                          | 0,0992                                                                     | vertedero lateral                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | m <sup>3</sup> /s                                |
| 25                                           | Relación longitud ancho del canal                                                                                                                                                                                                                                                                                                                                                                         | L/B                                              | 9,5                                            | 1                                                | -0 - #/ /D                                                                                                                                                                                                                                                                | 0.00                                                                       | Valor a verificar en la tabla de la                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                |
| 200                                          | Relación calado a energía específica                                                                                                                                                                                                                                                                                                                                                                      | W                                                | 0,1078                                         |                                                  | n2 = f(L/B;w)                                                                                                                                                                                                                                                             | 9,20                                                                       | figura 5.16 pag 199 Metcalf y Eddy                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b> </b>                                         |
| 26                                           | Diámetro de la tubería para Q sanitario                                                                                                                                                                                                                                                                                                                                                                   | Ds                                               | 0,270                                          | m3,                                              | K = QS x n/(Ds <sup>8/3</sup> x i <sup>1/2</sup> )                                                                                                                                                                                                                        | 0.4007                                                                     | Relación par determinación de                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                |
|                                              | Caudal Sanitario máximo                                                                                                                                                                                                                                                                                                                                                                                   | QS                                               | 0,048                                          | m³/s                                             | K = QS x n/(Ds x i 1 2 )                                                                                                                                                                                                                                                  | 0,1937                                                                     | calado de agua en la tubería                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ĺ                                                |
| ] L                                          | Dondinate de la tubería e secol                                                                                                                                                                                                                                                                                                                                                                           | :                                                | 0.0007                                         |                                                  | , , ,                                                                                                                                                                                                                                                                     |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |
|                                              | Pendiente de la tubería o canal                                                                                                                                                                                                                                                                                                                                                                           | i                                                | 0,0067                                         | m/m                                              |                                                                                                                                                                                                                                                                           |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |
| 27                                           | Pendiente de la tubería o canal<br>Rugosidad de la tubería o canal                                                                                                                                                                                                                                                                                                                                        | i<br>n                                           | 0,0067<br>0,010                                |                                                  | ,                                                                                                                                                                                                                                                                         |                                                                            | Relación calado a diámetro ó                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |
| 27                                           |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |                                                |                                                  |                                                                                                                                                                                                                                                                           | 0.57                                                                       | Relación calado a diámetro ó ancho                                                                                                                                                                                                                                                                                                                                                                                                                                                        | m                                                |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |                                                |                                                  | Y/B = f(K)                                                                                                                                                                                                                                                                | 0,57                                                                       | ancho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | m                                                |
| 27                                           |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |                                                |                                                  | Y/B = f(K)                                                                                                                                                                                                                                                                |                                                                            | ancho<br>calado de agua en la tubería circular                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  |
| 28                                           |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |                                                |                                                  |                                                                                                                                                                                                                                                                           | 0,15                                                                       | ancho<br>calado de agua en la tubería circular<br>ó rectangular con caudal mínimo                                                                                                                                                                                                                                                                                                                                                                                                         | m<br>m/s                                         |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |                                                |                                                  | $Y/B = f(K)$ $Y_2 = (Y/B) \times B$                                                                                                                                                                                                                                       | 0,15<br>0,01                                                               | ancho calado de agua en la tubería circular ó rectangular con caudal mínimo Desnivel a que se debe colocar la                                                                                                                                                                                                                                                                                                                                                                             |                                                  |
| 28                                           | Rugosidad de la tubería o canal                                                                                                                                                                                                                                                                                                                                                                           | n                                                | 0,010                                          |                                                  | Y/B = f(K)                                                                                                                                                                                                                                                                | 0,15                                                                       | ancho calado de agua en la tubería circular ó rectangular con caudal mínimo Desnivel a que se debe colocar la t.sanitaria respescto a la t.principal                                                                                                                                                                                                                                                                                                                                      |                                                  |
| 28                                           |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |                                                |                                                  | $Y/B = f(K)$ $Y_2 = (Y/B) \times B$ $\Delta = Y2 - Y$                                                                                                                                                                                                                     | 0,15<br>0,01<br>0,05                                                       | ancho calado de agua en la tubería circular ó rectangular con caudal mínimo Desnivel a que se debe colocar la t.sanitaria respescto a la t.principal Caudal máximo a llevar en la tubería                                                                                                                                                                                                                                                                                                 | m/s                                              |
| 28<br>29<br>30                               | Rugosidad de la tubería o canal  K para relación (d/D) <sub>max</sub> = 94%                                                                                                                                                                                                                                                                                                                               | n<br>Kmax                                        | 0,010                                          |                                                  | $Y/B = f(K)$ $Y_2 = (Y/B) \times B$                                                                                                                                                                                                                                       | 0,15<br>0,01                                                               | ancho calado de agua en la tubería circular ó rectangular con caudal mínimo Desnivel a que se debe colocar la t.sanitaria respescto a la t.principal Caudal máximo a llevar en la tubería sanitaria                                                                                                                                                                                                                                                                                       |                                                  |
| 28                                           | Rugosidad de la tubería o canal  K para relación (d/D) <sub>max</sub> = 94%  K1 para determinar área para máximo                                                                                                                                                                                                                                                                                          | n                                                | 0,010                                          |                                                  | $Y/B = f(K)$ $Y_2 = (Y/B) \times B$ $\Delta = Y2 - Y$ Q-max = Kmax x Ds <sup>8/3</sup> x i <sup>1/2</sup> / n                                                                                                                                                             | 0,15<br>0,01<br>0,05<br>0,0834                                             | ancho calado de agua en la tubería circular ó rectangular con caudal mínimo Desnivel a que se debe colocar la t.sanitaria respescto a la t.principal Caudal máximo a llevar en la tubería                                                                                                                                                                                                                                                                                                 | m/s<br>m³/s                                      |
| 28<br>29<br>30                               | Rugosidad de la tubería o canal  K para relación (d/D) <sub>max</sub> = 94%  K1 para determinar área para máximo caudal                                                                                                                                                                                                                                                                                   | n<br>Kmax                                        | 0,010                                          |                                                  | $Y/B = f(K)$ $Y_2 = (Y/B) \times B$ $\Delta = Y2 - Y$                                                                                                                                                                                                                     | 0,15<br>0,01<br>0,05                                                       | ancho calado de agua en la tubería circular ó rectangular con caudal mínimo Desnivel a que se debe colocar la t.sanitaria respescto a la t.principal Caudal máximo a llevar en la tubería sanitaria                                                                                                                                                                                                                                                                                       | m/s                                              |
| 28<br>29<br>30                               | Rugosidad de la tubería o canal  K para relación (d/D) <sub>max</sub> = 94%  K1 para determinar área para máximo                                                                                                                                                                                                                                                                                          | n<br>Kmax                                        | 0,010                                          |                                                  | $Y/B = f(K)$ $Y_2 = (Y/B) \times B$ $\Delta = Y2 - Y$ Q-max = Kmax x Ds <sup>8/3</sup> x i <sup>1/2</sup> / n                                                                                                                                                             | 0,15<br>0,01<br>0,05<br>0,0834                                             | ancho calado de agua en la tubería circular ó rectangular con caudal mínimo Desnivel a que se debe colocar la t.sanitaria respescto a la t.principal Caudal máximo a llevar en la tubería sanitaria Velocidad con caudal máximo                                                                                                                                                                                                                                                           | m/s<br>m³/s                                      |
| 28<br>29<br>30<br>31                         | Rugosidad de la tubería o canal  K para relación (d/D) <sub>max</sub> = 94%  K1 para determinar área para máximo caudal                                                                                                                                                                                                                                                                                   | n<br>Kmax                                        | 0,010                                          |                                                  | $Y/B = f(K)$ $Y_2 = (Y/B) \times B$ $\Delta = Y2 - Y$ $Q-max = Kmax \times Ds^{8/3} \times i^{1/2}/n$ $V-max-s = Q-max/(K1 \times Ds^2)$                                                                                                                                  | 0,15<br>0,01<br>0,05<br>0,0834                                             | ancho calado de agua en la tubería circular ó rectangular con caudal mínimo Desnivel a que se debe colocar la t.sanitaria respescto a la t.principal Caudal máximo a llevar en la tubería sanitaria                                                                                                                                                                                                                                                                                       | m/s<br>m³/s<br>m/s                               |
| 28<br>29<br>30<br>31                         | Rugosidad de la tubería o canal  K para relación (d/D) <sub>max</sub> = 94%  K1 para determinar área para máximo caudal                                                                                                                                                                                                                                                                                   | n<br>Kmax                                        | 0,010                                          |                                                  | $Y/B = f(K)$ $Y_2 = (Y/B) \times B$ $\Delta = Y2 - Y$ Q-max = Kmax x Ds <sup>8/3</sup> x i <sup>1/2</sup> / n                                                                                                                                                             | 0,15<br>0,01<br>0,05<br>0,0834                                             | ancho calado de agua en la tubería circular ó rectangular con caudal mínimo Desnivel a que se debe colocar la t.sanitaria respescto a la t.principal Caudal máximo a llevar en la tubería sanitaria Velocidad con caudal máximo  Calado de agua a caudal máximo                                                                                                                                                                                                                           | m/s<br>m³/s                                      |
| 28<br>29<br>30<br>31<br>32                   | Rugosidad de la tubería o canal  K para relación (d/D) <sub>max</sub> = 94%  K1 para determinar área para máximo caudal                                                                                                                                                                                                                                                                                   | n<br>Kmax                                        | 0,010                                          |                                                  | $Y/B = f(K)$ $Y_2 = (Y/B) \times B$ $\Delta = Y2 - Y$ $Q-max = Kmax \times Ds^{8/3} \times i^{1/2} / n$ $V-max-s = Q-max/(K1 \times Ds^2)$ $Ymax = 0.94 \times Ds$                                                                                                        | 0,15<br>0,01<br>0,05<br>0,0834<br>1,49                                     | ancho calado de agua en la tubería circular ó rectangular con caudal mínimo Desnivel a que se debe colocar la Lsanitaria respescto a la t.principal Caudal máximo a llevar en la tubería sanitaria Velocidad con caudal máximo  Calado de agua a caudal máximo                                                                                                                                                                                                                            | m/s m/s m3/s m/s                                 |
| 28<br>29<br>30<br>31<br>32                   | Rugosidad de la tubería o canal  K para relación (d/D) <sub>max</sub> = 94%  K1 para determinar área para máximo caudal                                                                                                                                                                                                                                                                                   | n<br>Kmax                                        | 0,010                                          |                                                  | $Y/B = f(K)$ $Y_2 = (Y/B) \times B$ $\Delta = Y2 - Y$ $Q-max = Kmax \times Ds^{8/3} \times i^{1/2}/n$ $V-max-s = Q-max/(K1 \times Ds^2)$                                                                                                                                  | 0,15<br>0,01<br>0,05<br>0,0834                                             | ancho calado de agua en la tubería circular ó rectangular con caudal mínimo Desnivel a que se debe colocar la t.sanitaria respescto a la t.principal Caudal máximo a llevar en la tubería sanitaria Velocidad con caudal máximo  Calado de agua a caudal máximo  Calado de agua a la salida del vertedero lateral.                                                                                                                                                                        | m/s<br>m³/s<br>m/s                               |
| 28<br>29<br>30<br>31<br>32<br>33             | Rugosidad de la tubería o canal  K para relación (d/D) <sub>max</sub> = 94%  K1 para determinar área para máximo caudal                                                                                                                                                                                                                                                                                   | n<br>Kmax                                        | 0,010                                          |                                                  | $Y/B = f(K)$ $Y_2 = (Y/B) \times B$ $\Delta = Y2 - Y$ Q-max = Kmax x Ds <sup>8/3</sup> x i <sup>1/2</sup> / n V-max-s = Q-max/(K1 x Ds <sup>2</sup> )  Ymax = 0.94 x Ds $h2 = Ymax - Y_2$                                                                                 | 0,15<br>0,01<br>0,05<br>0,0834<br>1,49                                     | ancho calado de agua en la tubería circular ó rectangular con caudal mínimo Desnivel a que se debe colocar la Lsanitaria respescto a la t.principal Caudal máximo a llevar en la tubería sanitaria Velocidad con caudal máximo  Calado de agua a caudal máximo                                                                                                                                                                                                                            | m/s m³/s m/s m m                                 |
| 28<br>29<br>30<br>31<br>32<br>33             | Rugosidad de la tubería o canal  K para relación (d/D) <sub>max</sub> = 94%  K1 para determinar área para máximo caudal  Cálculo con la ecuación de Babbit                                                                                                                                                                                                                                                | n<br>Kmax                                        | 0,010                                          |                                                  | $Y/B = f(K)$ $Y_2 = (Y/B) \times B$ $\Delta = Y2 - Y$ $Q-max = Kmax \times Ds^{8/3} \times i^{1/2} / n$ $V-max-s = Q-max/(K1 \times Ds^2)$ $Ymax = 0.94 \times Ds$                                                                                                        | 0,15<br>0,01<br>0,05<br>0,0834<br>1,49                                     | ancho calado de agua en la tubería circular ó rectangular con caudal mínimo Desnivel a que se debe colocar la t.sanitaria respescto a la t.principal Caudal máximo a llevar en la tubería sanitaria Velocidad con caudal máximo  Calado de agua a caudal máximo  Calado de agua a la salida del vertedero lateral. Calado de agua a lingreso del vertedero lateral.                                                                                                                       | m/s m³/s m/s                                     |
| 28<br>29<br>30<br>31<br>32<br>33<br>34       | Rugosidad de la tubería o canal  K para relación (d/D) <sub>max</sub> = 94%  K1 para determinar área para máximo caudal                                                                                                                                                                                                                                                                                   | n<br>Kmax<br>K1                                  | 0,010<br>0,3353<br>0,7662                      | m/m                                              | $Y/B = f(K)$ $Y_2 = (Y/B) \times B$ $\Delta = Y2 - Y$ $Q-max = Kmax \times Ds^{03} \times i^{1/2} / n$ $V-max-s = Q-max/(K1 \times Ds^2)$ $Ymax = 0.94 \times Ds$ $h2 = Ymax - Y_2$ $h1 = H - Y                                $                                          | 0,15<br>0,01<br>0,05<br>0,0834<br>1,49<br>0,2538<br>0,0999                 | ancho calado de agua en la tubería circular ó rectangular con caudal mínimo Desnivel a que se debe colocar la Lsanitaria respescto a la t.principal Caudal máximo a llevar en la tubería sanitaria Velocidad con caudal máximo  Calado de agua a caudal máximo  Calado de agua a la salida del vertedero lateral. Calado de agua al ingreso del vertedero lateral.  Determinación de la longitud                                                                                          | m/s m³/s m/s m m                                 |
| 28<br>29<br>30<br>31<br>32<br>33<br>34<br>35 | Rugosidad de la tubería o canal  K para relación (d/D) <sub>max</sub> = 94%  K1 para determinar área para máximo caudal  Cálculo con la ecuación de Babbit                                                                                                                                                                                                                                                | n Kmax K1                                        | 0,010<br>0,3353<br>0,7662                      | m/m                                              | $Y/B = f(K)$ $Y_2 = (Y/B) \times B$ $\Delta = Y2 - Y$ Q-max = Kmax x Ds <sup>8/3</sup> x i <sup>1/2</sup> / n V-max-s = Q-max/(K1 x Ds <sup>2</sup> )  Ymax = 0.94 x Ds $h2 = Ymax - Y_2$                                                                                 | 0,15<br>0,01<br>0,05<br>0,0834<br>1,49                                     | ancho calado de agua en la tubería circular ó rectangular con caudal mínimo Desnivel a que se debe colocar la t.sanitaria respescto a la t.principal Caudal máximo a llevar en la tubería sanitaria Velocidad con caudal máximo  Calado de agua a caudal máximo  Calado de agua a la salida del vertedero lateral. Calado de agua a lingreso del vertedero lateral.                                                                                                                       | m/s m³/s m/s m m                                 |
| 28<br>29<br>30<br>31<br>32<br>33<br>34<br>35 | Rugosidad de la tubería o canal  K para relación (d/D) <sub>max</sub> = 94%  K1 para determinar área para máximo caudal  Cálculo con la ecuación de Babbit  Velocidad de aproximación con caudal máximo cionamiento de la transición para giros de                                                                                                                                                        | n Kmax K1                                        | 0,010<br>0,3353<br>0,7662<br>2,82              | m/m                                              | $Y/B = f(K)$ $Y_2 = (Y/B) \times B$ $\Delta = Y2 - Y$ $Q-max = Kmax \times Ds^{03} \times i^{1/2} / n$ $V-max-s = Q-max/(K1 \times Ds^2)$ $Ymax = 0.94 \times Ds$ $h2 = Ymax - Y_2$ $h1 = H - Y                                $                                          | 0,15<br>0,01<br>0,05<br>0,0834<br>1,49<br>0,2538<br>0,0999                 | ancho  calado de agua en la tubería circular ó rectangular con caudal mínimo  Desnivel a que se debe colocar la t.sanitaria respescto a la t.principal  Caudal máximo a llevar en la tubería sanitaria  Velocidad con caudal máximo  Calado de agua a caudal máximo  Calado de agua a la salida del vertedero lateral.  Determinación de la longitud del vertedero lateral                                                                                                                | m/s m³/s m/s m m                                 |
| 28 29 30 31 31 32 33 34 35 Dimens            | Rugosidad de la tubería o canal  K para relación (d/D) <sub>max</sub> = 94%  K1 para determinar área para máximo caudal  Cálculo con la ecuación de Babbit  Velocidad de aproximación con caudal máximo                                                                                                                                                                                                   | n Kmax K1 Vmax understanding                     | 0,010<br>0,3353<br>0,7662                      | m/m                                              | Y/B = f(K)  Y <sub>2</sub> = (Y/B) x B  Δ = Y2 - Y  Q-max = Kmax x Ds <sup>93</sup> x i <sup>1/2</sup> / n  V-max-s = Q-max/(K1 x Ds <sup>2</sup> )  Ymax = 0.94 x Ds  h2 = Ymax - Y <sub>2</sub> h1 = H - Y <b>6</b> h1 = 0.94 x D - Y  L = 7.55 x Vmax x d x log(h1/h2) | 0,15<br>0,01<br>0,05<br>0,0834<br>1,49<br>0,2538<br>0,0999                 | ancho calado de agua en la tubería circular ó rectangular con caudal mínimo Desnivel a que se debe colocar la Lsanitaria respescto a la t.principal Caudal máximo a llevar en la tubería sanitaria Velocidad con caudal máximo  Calado de agua a caudal máximo  Calado de agua a la salida del vertedero lateral. Calado de agua al ingreso del vertedero lateral.  Determinación de la longitud                                                                                          | m/s m³/s m/s m m                                 |
| 28 29 30 31 31 32 33 34 35 Dimens            | Rugosidad de la tubería o canal  K para relación (d/D) <sub>max</sub> = 94%  K1 para determinar área para máximo caudal  Cálculo con la ecuación de Babbit  Velocidad de aproximación con caudal máximo ideal transición para giros de Diámetro o base tubería ingreso                                                                                                                                    | n Kmax K1 Vmax a tuberia sanitar B o D           | 0,010<br>0,3353<br>0,7662<br>2,82<br>ia<br>0,6 | m/m                                              | $Y/B = f(K)$ $Y_2 = (Y/B) \times B$ $\Delta = Y2 - Y$ $Q-max = Kmax \times Ds^{03} \times i^{1/2} / n$ $V-max-s = Q-max/(K1 \times Ds^2)$ $Ymax = 0.94 \times Ds$ $h2 = Ymax - Y_2$ $h1 = H - Y                                $                                          | 0,15<br>0,01<br>0,05<br>0,0834<br>1,49<br>0,2538<br>0,0999<br>0,462<br>8,5 | ancho  calado de agua en la tubería circular ó rectangular con caudal mínimo  Desnivel a que se debe colocar la t.sanitaria respescto a la t.principal  Caudal máximo a llevar en la tubería sanitaria  Velocidad con caudal máximo  Calado de agua a caudal máximo  Calado de agua a la salida del vertedero lateral.  Determinación de la longitud del vertedero lateral                                                                                                                | m/s  m³/s  m/s  m  m  m                          |
| 28 29 30 31 31 32 33 34 35 Dimens            | Rugosidad de la tubería o canal  K para relación (d/D) <sub>max</sub> = 94%  K1 para determinar área para máximo caudal  Cálculo con la ecuación de Babbit  Velocidad de aproximación con caudal máximo cionamiento de la transición para giros de Diámetro o base tubería ingreso Diámetro o base tubería salida                                                                                         | n  Kmax  K1  Vmax  la tubería sanitar  B o D  Ds | 0,010  0,3353  0,7662  2,82  ia  0,6  0,27     | m/m                                              | Y/B = f(K)  Y <sub>2</sub> = (Y/B) x B  Δ = Y2 - Y  Q-max = Kmax x Ds <sup>93</sup> x i <sup>1/2</sup> / n  V-max-s = Q-max/(K1 x Ds <sup>2</sup> )  Ymax = 0.94 x Ds  h2 = Ymax - Y <sub>2</sub> h1 = H - Y <b>6</b> h1 = 0.94 x D - Y  L = 7.55 x Vmax x d x log(h1/h2) | 0,15<br>0,01<br>0,05<br>0,0834<br>1,49<br>0,2538<br>0,0999<br>0,462<br>8,5 | ancho  calado de agua en la tubería circular ó rectangular con caudal mínimo  Desnivel a que se debe colocar la t.sanitaria respescto a la t.principal  Caudal máximo a llevar en la tubería sanitaria  Velocidad con caudal máximo  Calado de agua a caudal máximo  Calado de agua a la salida del vertedero lateral.  Determinación de la longitud del vertedero lateral                                                                                                                | m/s  m³/s  m/s  m  m  m                          |
| 28 29 30 31 32 33 34 35 Dimens 36            | Rugosidad de la tubería o canal  K para relación (d/D) <sub>max</sub> = 94%  K1 para determinar área para máximo caudal  Cálculo con la ecuación de Babbit  Velocidad de aproximación con caudal máximo incaudal máximo incaudal máximo bionamiento de la transición para giros de Diámetro o base tubería ingreso Diámetro o base tubería salida  Angulo de transición                                   | n  Kmax  K1  Vmax  la tubería sanitar  B o D  Ds | 0,010  0,3353  0,7662  2,82  ia  0,6  0,27     | m/m                                              | Y/B = f(K)  Y <sub>2</sub> = (Y/B) x B  Δ = Y2 - Y  Q-max = Kmax x Ds <sup>93</sup> x i <sup>1/2</sup> / n  V-max-s = Q-max/(K1 x Ds <sup>2</sup> )  Ymax = 0.94 x Ds  h2 = Ymax - Y <sub>2</sub> h1 = H - Y <b>6</b> h1 = 0.94 x D - Y  L = 7.55 x Vmax x d x log(h1/h2) | 0,15<br>0,01<br>0,05<br>0,0834<br>1,49<br>0,2538<br>0,0999<br>0,462<br>8,5 | ancho  calado de agua en la tubería circular ó rectangular con caudal mínimo  Desnivel a que se debe colocar la t.sanitaria respescto a la t.principal  Caudal máximo a llevar en la tubería sanitaria  Velocidad con caudal máximo  Calado de agua a caudal máximo  Calado de agua a la salida del vertedero lateral.  Calado de agua al ingreso del vertedero lateral.  Determinación de la longitud del vertedero lateral  Longitud de la transición                                   | m/s  m³/s  m/s  m  m  m                          |
| 28 29 30 31 32 33 34 35 Dimens 36            | Rugosidad de la tubería o canal  K para relación (d/D) <sub>max</sub> = 94%  K1 para determinar área para máximo caudal  Cálculo con la ecuación de Babbit  Velocidad de aproximación con caudal máximo ionamiento de la transición para giros de Diámetro o base tubería salida Angulo de transición  Relación diámetro tubería versus radio de                                                          | N Kmax K1 Vmax a tuberia sanitar B ο D Ds θ      | 0,010  0,3353  0,7662  2,82  ia  0,6  0,27  6  | m/m                                              | $Y/B = f(K)$ $Y_2 = (Y/B) \times B$ $\Delta = Y2 - Y$ $Q-max = Kmax \times Ds^{8/3} \times i^{1/2}/n$ $V-max-s = Q-max/(K1 \times Ds^2)$ $Ymax = 0,94 \times Ds$ $h2 = Ymax - Y_2$ $h1 = H - Y                                $                                           | 0,15<br>0,01<br>0,05<br>0,0834<br>1,49<br>0,2538<br>0,0999<br>0,462<br>8,5 | ancho  calado de agua en la tubería circular ó rectangular con caudal mínimo  Desnivel a que se debe colocar la t.sanitaria respescto a la t.principal  Caudal máximo a llevar en la tubería sanitaria  Velocidad con caudal máximo  Calado de agua a caudal máximo  Calado de agua a la salida del vertedero lateral.  Calado de agua al ingreso del vertedero lateral.  Determinación de la longitud del vertedero lateral  Longitud de la transición                                   | m/s  m³/s  m/s  m  m  m                          |
| 28 29 30 31 31 32 33 34 35 Dimens 36 37      | Rugosidad de la tubería o canal  K para relación (d/D) <sub>max</sub> = 94%  K1 para determinar área para máximo caudal  Cálculo con la ecuación de Babbit  Velocidad de aproximación con caudal máximo isionamiento de la transición para giros de Diámetro o base tubería ingreso Diámetro o base tubería salida  Angulo de transición  Relación diámetro tubería versus radio de curvatura recomendado | N Kmax K1 Vmax a tuberia sanitar B ο D Ds θ      | 0,010  0,3353  0,7662  2,82  ia  0,6  0,27  6  | m/m                                              | $Y/B = f(K)$ $Y_2 = (Y/B) \times B$ $\Delta = Y2 - Y$ $Q-max = Kmax \times Ds^{8/3} \times i^{1/2}/n$ $V-max-s = Q-max/(K1 \times Ds^2)$ $Ymax = 0,94 \times Ds$ $h2 = Ymax - Y_2$ $h1 = H - Y                                $                                           | 0,15<br>0,01<br>0,05<br>0,0834<br>1,49<br>0,2538<br>0,0999<br>0,462<br>8,5 | ancho  calado de agua en la tubería circular ó rectangular con caudal mínimo  Desnivel a que se debe colocar la t.sanitaria respescto a la t.principal  Caudal máximo a llevar en la tubería sanitaria  Velocidad con caudal máximo  Calado de agua a caudal máximo  Calado de agua a la salida del vertedero lateral.  Calado de agua al ingreso del vertedero lateral.  Determinación de la longitud del vertedero lateral  Longitud de la transición  Radio de curvatura en la tubería | m/s  m³/s  m/s  m  m  m                          |

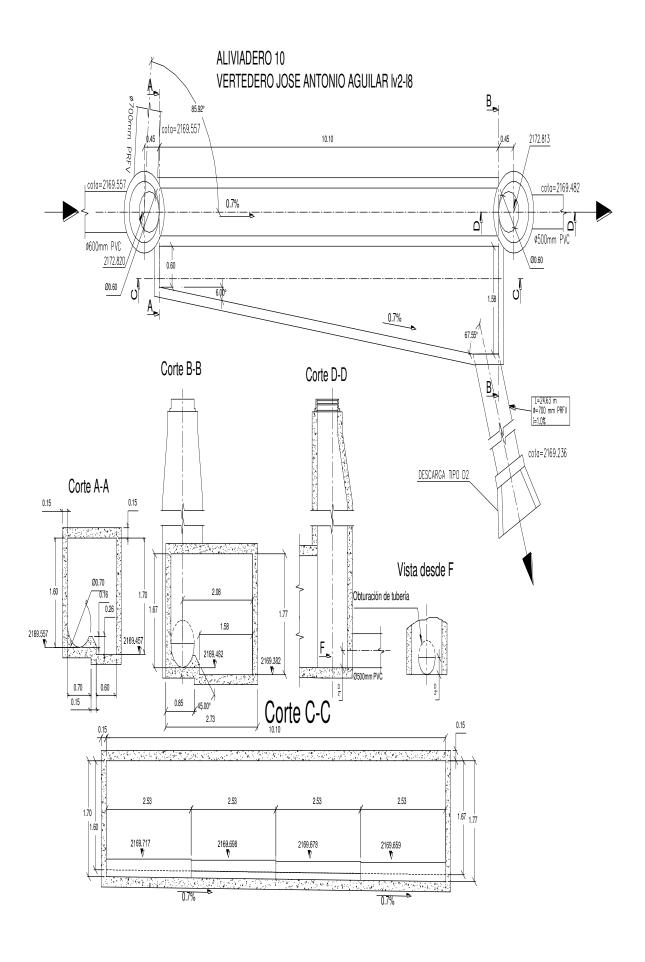
|                                              |                                                                                                                                                                                                                                                                                      | PARA CANAL                                       | ES CIRCUL                         | ARES O R                                         | ECTANGULARES DOS TUBERIAS DE LL                                                                                                                                                                                                                        | .EGADA                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |
|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| PASO                                         | DATOS                                                                                                                                                                                                                                                                                | SIMBOLO                                          | VALOR                             | UNIDAD                                           | CRITERIO                                                                                                                                                                                                                                               | CALCULO                                                   | RESULTADO                                                                                                                                                                                                                                                                                                                                                                                                                | UNIDAD                  |
| 39                                           | Coeficiente de pérdida por cambio de                                                                                                                                                                                                                                                 |                                                  |                                   |                                                  |                                                                                                                                                                                                                                                        |                                                           | Pérdida de carga porcambio de                                                                                                                                                                                                                                                                                                                                                                                            |                         |
|                                              | dirección según el ángulo de giro                                                                                                                                                                                                                                                    | р                                                | 0                                 |                                                  | $hf = p \times V-max-s^2/(2 \times g)$                                                                                                                                                                                                                 | 0,000                                                     | dirección en el interior del colector                                                                                                                                                                                                                                                                                                                                                                                    | m                       |
| 40                                           |                                                                                                                                                                                                                                                                                      |                                                  |                                   |                                                  | i = (bf + A)/(l + lo)                                                                                                                                                                                                                                  | 1,67%                                                     | Pendiente en el canal de transición                                                                                                                                                                                                                                                                                                                                                                                      | %                       |
|                                              | VERTEDERO AZUAY Iv18 - Iv17;                                                                                                                                                                                                                                                         | ALV 4                                            |                                   |                                                  | $i = (hf + \Delta)/(I + Ic)$                                                                                                                                                                                                                           | 1,07 /6                                                   | por cambio de dirección y desnivel                                                                                                                                                                                                                                                                                                                                                                                       | 70                      |
| 1                                            | Diámetro o ancho de la tubería UNO                                                                                                                                                                                                                                                   | DóB                                              | 0,500                             | m                                                |                                                                                                                                                                                                                                                        |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |
| İ                                            | Altura del canal recatangular                                                                                                                                                                                                                                                        | Н                                                | 0,000                             | m                                                |                                                                                                                                                                                                                                                        |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |
| İ                                            | Pendiente de la tubería o canal UNO                                                                                                                                                                                                                                                  | i                                                | 0,0134                            | m/m                                              | Q-max1 = Kmax x D <sup>8/3</sup> x i <sup>1/2</sup> / n                                                                                                                                                                                                | 0,68                                                      | Caudal máximo para canal                                                                                                                                                                                                                                                                                                                                                                                                 |                         |
|                                              | Rugosidad de la tubería o canal UNO                                                                                                                                                                                                                                                  | n                                                | 0,009                             |                                                  |                                                                                                                                                                                                                                                        |                                                           | circular                                                                                                                                                                                                                                                                                                                                                                                                                 | m <sup>3</sup> /s       |
|                                              | K para relación (d/D) <sub>max</sub> = 94%                                                                                                                                                                                                                                           | Kmax                                             | 0,3353                            |                                                  |                                                                                                                                                                                                                                                        |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |
| 2                                            | Diámetro o ancho de la tubería DOS                                                                                                                                                                                                                                                   | DóB                                              | 0,600                             | m                                                |                                                                                                                                                                                                                                                        |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |
|                                              | Altura del canal recatangular                                                                                                                                                                                                                                                        | Н                                                | 0,000                             | m                                                | 000 400                                                                                                                                                                                                                                                |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |
| ļ                                            | Pendiente de la tubería o canal DOS                                                                                                                                                                                                                                                  | i                                                | 0,006                             | m/m                                              | Q-max2 = Kmax x D <sup>8/3</sup> x i <sup>1/2</sup> / n                                                                                                                                                                                                | 0,71                                                      | Caudal máximo para canal                                                                                                                                                                                                                                                                                                                                                                                                 | 2                       |
|                                              | Rugosidad de la tubería o canal DOS                                                                                                                                                                                                                                                  | n                                                | 0,009                             |                                                  |                                                                                                                                                                                                                                                        |                                                           | circular                                                                                                                                                                                                                                                                                                                                                                                                                 | m <sup>3</sup> /s       |
| 3                                            | K para relación (d/D) <sub>max</sub> = 94%  Caudal pluvial a transportar las dos                                                                                                                                                                                                     | Kmax                                             | 0,3353                            |                                                  |                                                                                                                                                                                                                                                        |                                                           | Coudal máxima a transportar                                                                                                                                                                                                                                                                                                                                                                                              |                         |
| 3                                            | tuberías para un período de 5 años                                                                                                                                                                                                                                                   | Qmax-d                                           | 1.052,20                          | It/s                                             | Qmax = Qmax1 + Qmax2                                                                                                                                                                                                                                   | 1,39                                                      | Caudal máximo a transportar<br>las dos tuberías                                                                                                                                                                                                                                                                                                                                                                          | m <sup>3</sup> /s       |
| 4                                            | Diámetro o ancho de la tubería                                                                                                                                                                                                                                                       | D ó B                                            | 0,700                             | m                                                | Qillax - Qillax i + Qillaxz                                                                                                                                                                                                                            | 1,39                                                      | ias dos tuberias                                                                                                                                                                                                                                                                                                                                                                                                         | m /s                    |
| 7                                            | Pendiente de la tubería o canal                                                                                                                                                                                                                                                      | i                                                | 0,006                             | m/m                                              | Q-max = Kmax x D <sup>8/3</sup> x i <sup>1/2</sup> / n                                                                                                                                                                                                 | 1,11                                                      | Caudal máximo para canal                                                                                                                                                                                                                                                                                                                                                                                                 |                         |
| l                                            | Rugosidad de la tubería o canal                                                                                                                                                                                                                                                      | n                                                | 0,009                             |                                                  | Q max max 2 X 7 m                                                                                                                                                                                                                                      |                                                           | circular                                                                                                                                                                                                                                                                                                                                                                                                                 | m <sup>3</sup> /s       |
|                                              | K para relación (d/D) <sub>max</sub> = 94%                                                                                                                                                                                                                                           | Kmax                                             | 0,3353                            |                                                  |                                                                                                                                                                                                                                                        |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |
| 5                                            | K1 para calcular área para Qmax                                                                                                                                                                                                                                                      | K1                                               | 0,7662                            |                                                  |                                                                                                                                                                                                                                                        | 0,38                                                      | Area de sección transversal                                                                                                                                                                                                                                                                                                                                                                                              |                         |
|                                              |                                                                                                                                                                                                                                                                                      |                                                  |                                   |                                                  | $Am = K1 \times D^2$                                                                                                                                                                                                                                   |                                                           | para caudal máximo tub. Circular                                                                                                                                                                                                                                                                                                                                                                                         | m <sup>2</sup>          |
|                                              |                                                                                                                                                                                                                                                                                      |                                                  |                                   |                                                  |                                                                                                                                                                                                                                                        |                                                           | Velocidad transversal                                                                                                                                                                                                                                                                                                                                                                                                    |                         |
|                                              |                                                                                                                                                                                                                                                                                      |                                                  |                                   |                                                  | Vmax = Qmax/A                                                                                                                                                                                                                                          | 2,97                                                      | con caudal máximo                                                                                                                                                                                                                                                                                                                                                                                                        | m/s                     |
| 6                                            | Altura del canal                                                                                                                                                                                                                                                                     | Н                                                | 0,000                             | m                                                |                                                                                                                                                                                                                                                        |                                                           | Determinación de Kmax para                                                                                                                                                                                                                                                                                                                                                                                               |                         |
|                                              | Relación H/B                                                                                                                                                                                                                                                                         | H/B                                              | 0,000                             |                                                  | Kmax = f(H/B)                                                                                                                                                                                                                                          | canal circular                                            | canales rectangulares                                                                                                                                                                                                                                                                                                                                                                                                    |                         |
| 7                                            |                                                                                                                                                                                                                                                                                      | İ                                                |                                   | 1                                                |                                                                                                                                                                                                                                                        |                                                           | Caudal máximo a transportar                                                                                                                                                                                                                                                                                                                                                                                              |                         |
|                                              |                                                                                                                                                                                                                                                                                      | 1                                                |                                   |                                                  | Q-max = Kmax x B <sup>8/3</sup> x i <sup>1/2</sup> / n                                                                                                                                                                                                 | canal circular                                            | para tubería rectangular                                                                                                                                                                                                                                                                                                                                                                                                 | m³/s                    |
| 8                                            |                                                                                                                                                                                                                                                                                      | 1                                                |                                   |                                                  | Marie Committee in                                                                                                                                                                                                                                     |                                                           | Velocidad transversal                                                                                                                                                                                                                                                                                                                                                                                                    |                         |
| _                                            | Couldel Caritaria \$4 - 4' -                                                                                                                                                                                                                                                         | 0-                                               | 24 750                            | 11.1-                                            | Vmax = Q-max/(B x H)                                                                                                                                                                                                                                   | canal circular                                            | con caudal máximo                                                                                                                                                                                                                                                                                                                                                                                                        | m/s                     |
| 9                                            | Caudal Sanitario Medio Relación de dilución entre 2,5 y 5                                                                                                                                                                                                                            | Qs<br>R                                          | 21,750<br>2,500                   | lt/s                                             | QS = R x Qs/1000                                                                                                                                                                                                                                       | 0,054                                                     | Caudal máximo a transportar en<br>tubería sanitaria                                                                                                                                                                                                                                                                                                                                                                      | m <sup>3</sup> /s       |
| 10                                           | Relacion de dilucion entre 2,5 y 5                                                                                                                                                                                                                                                   | K                                                | 2,500                             |                                                  | Q3 - R X Q5/1000                                                                                                                                                                                                                                       | 0,054                                                     | Relación par determinación de                                                                                                                                                                                                                                                                                                                                                                                            | m /s                    |
| 10                                           |                                                                                                                                                                                                                                                                                      |                                                  |                                   |                                                  | K = QS x n/(D <sup>8/3</sup> x i <sup>1/2</sup> )                                                                                                                                                                                                      | 0,0164                                                    | calado de agua en la tubería                                                                                                                                                                                                                                                                                                                                                                                             |                         |
| 11                                           |                                                                                                                                                                                                                                                                                      |                                                  |                                   |                                                  | K = Q3 X II/(D X I )                                                                                                                                                                                                                                   | 0,0104                                                    | Relación calado a diámetro ó                                                                                                                                                                                                                                                                                                                                                                                             |                         |
|                                              |                                                                                                                                                                                                                                                                                      |                                                  |                                   |                                                  | Y/B = f(K)                                                                                                                                                                                                                                             | 0,15                                                      | ancho                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |
| 12                                           |                                                                                                                                                                                                                                                                                      |                                                  |                                   |                                                  |                                                                                                                                                                                                                                                        |                                                           | calado de agua en la tubería circular                                                                                                                                                                                                                                                                                                                                                                                    |                         |
|                                              |                                                                                                                                                                                                                                                                                      |                                                  |                                   |                                                  | Y = (Y/B) x B                                                                                                                                                                                                                                          | 0,11                                                      | ó rectangular con caudal mínimo                                                                                                                                                                                                                                                                                                                                                                                          | m                       |
| 13                                           | Determinación del coeficiente K1                                                                                                                                                                                                                                                     |                                                  |                                   |                                                  | , ,                                                                                                                                                                                                                                                    | -,                                                        | Area de sección transversal                                                                                                                                                                                                                                                                                                                                                                                              |                         |
|                                              |                                                                                                                                                                                                                                                                                      | K1 = f(Y/B)                                      | 0,07                              |                                                  | A = K1 x D <sup>2</sup>                                                                                                                                                                                                                                | 0,0362                                                    | en tubería circual                                                                                                                                                                                                                                                                                                                                                                                                       | m <sup>2</sup>          |
| 14                                           |                                                                                                                                                                                                                                                                                      |                                                  |                                   |                                                  |                                                                                                                                                                                                                                                        |                                                           | Velocidad transversal en la                                                                                                                                                                                                                                                                                                                                                                                              |                         |
|                                              |                                                                                                                                                                                                                                                                                      |                                                  |                                   |                                                  | V = Q/A                                                                                                                                                                                                                                                | 1,50                                                      | tubería circual con caudal mínimo                                                                                                                                                                                                                                                                                                                                                                                        |                         |
| 15                                           |                                                                                                                                                                                                                                                                                      |                                                  |                                   |                                                  |                                                                                                                                                                                                                                                        |                                                           | Velocidad transversal en la tubería                                                                                                                                                                                                                                                                                                                                                                                      |                         |
|                                              |                                                                                                                                                                                                                                                                                      |                                                  |                                   | 979                                              | V = Q/(B x Y)                                                                                                                                                                                                                                          | canal circular                                            | rectangular con caudal mínimo                                                                                                                                                                                                                                                                                                                                                                                            | m                       |
|                                              | Cálculo con la ecuación de Ackers                                                                                                                                                                                                                                                    |                                                  |                                   | 51,45                                            |                                                                                                                                                                                                                                                        | 1                                                         | T                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |
| 16                                           | Velocidad con caudal máximo                                                                                                                                                                                                                                                          | Vn                                               | 2,969                             | m/s                                              | - 1,20                                                                                                                                                                                                                                                 |                                                           | Cálculo de la energía específica                                                                                                                                                                                                                                                                                                                                                                                         |                         |
| ŀ                                            | Coeficiente corrección energía cinetica  Aceleración de la gravedad                                                                                                                                                                                                                  | α <sub>1</sub>                                   | 1,200<br>9,810                    | m/s                                              | Ew = $\alpha \times Vn^2/2g + (dn - Y)$                                                                                                                                                                                                                | 1,09                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                          | m                       |
| ŀ                                            | Altura del canal para Qmáximo                                                                                                                                                                                                                                                        | g<br>dn                                          | 0,660                             | m                                                |                                                                                                                                                                                                                                                        | 1,09                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                          | 111                     |
| 17                                           | Aitura dei cariai para Qiriaxiirio                                                                                                                                                                                                                                                   | uii                                              | 0,000                             |                                                  |                                                                                                                                                                                                                                                        |                                                           | Relación calado a energía                                                                                                                                                                                                                                                                                                                                                                                                |                         |
|                                              |                                                                                                                                                                                                                                                                                      |                                                  |                                   |                                                  | (w=Y/Ew) < 0,6                                                                                                                                                                                                                                         | 0,10                                                      | específica                                                                                                                                                                                                                                                                                                                                                                                                               |                         |
| 18                                           | Relación entre h1 y h2 (calado de ingreso                                                                                                                                                                                                                                            | n <sub>2</sub>                                   | 20,000                            |                                                  | $L_x = 2.03 \times B \times (2.828 \times \sqrt{(n_x - 0.4)}(1 - 0.4 w) +$                                                                                                                                                                             |                                                           | Longitud requerida para el                                                                                                                                                                                                                                                                                                                                                                                               |                         |
|                                              | y calado de salida)                                                                                                                                                                                                                                                                  |                                                  |                                   |                                                  | $+ 0.31 \text{ w} - 0.984 \text{ ar } \cos \sqrt{(0.4/n,)} + 0.065$                                                                                                                                                                                    | 12,00                                                     | vertedero                                                                                                                                                                                                                                                                                                                                                                                                                | m                       |
| 19                                           | Coeficiente de corrección energía cinética                                                                                                                                                                                                                                           | $\alpha_2$                                       | 1,400                             |                                                  | *,                                                                                                                                                                                                                                                     |                                                           | Determinación de la velocidad                                                                                                                                                                                                                                                                                                                                                                                            |                         |
|                                              | Coeficiente de corrección energía presiones                                                                                                                                                                                                                                          | α <sub>2</sub> `                                 | 0,950                             |                                                  | $V2 = ((2g/\alpha_2) (Ew - \alpha_2' \times Ew/(2 \times n_2)))^{0.5}$                                                                                                                                                                                 | 3,87                                                      | en el extremo inferior del vertedro                                                                                                                                                                                                                                                                                                                                                                                      | m/s                     |
| 20                                           |                                                                                                                                                                                                                                                                                      |                                                  |                                   |                                                  |                                                                                                                                                                                                                                                        |                                                           | Altura del calado de agua en el                                                                                                                                                                                                                                                                                                                                                                                          |                         |
|                                              |                                                                                                                                                                                                                                                                                      |                                                  |                                   |                                                  | h1 = 0,5 x Ew                                                                                                                                                                                                                                          | 0,55                                                      | vertedero al ingreso                                                                                                                                                                                                                                                                                                                                                                                                     | m                       |
| 21                                           |                                                                                                                                                                                                                                                                                      |                                                  |                                   |                                                  |                                                                                                                                                                                                                                                        |                                                           | Altura del calado de agua en el                                                                                                                                                                                                                                                                                                                                                                                          |                         |
|                                              |                                                                                                                                                                                                                                                                                      |                                                  |                                   |                                                  | h2 = h1/n <sub>2</sub>                                                                                                                                                                                                                                 | 0,03                                                      | vertedero a la salida                                                                                                                                                                                                                                                                                                                                                                                                    | m                       |
| 22                                           |                                                                                                                                                                                                                                                                                      |                                                  |                                   |                                                  |                                                                                                                                                                                                                                                        |                                                           | Calado de agua a la salida                                                                                                                                                                                                                                                                                                                                                                                               |                         |
| 22                                           | Palación calado o diómotro e acaba del                                                                                                                                                                                                                                               | <del>                                     </del> |                                   | 1                                                | d2 = Y + h2                                                                                                                                                                                                                                            | 0,13                                                      | del vertedero lateral                                                                                                                                                                                                                                                                                                                                                                                                    | m                       |
| 23                                           | Relación calado a diámetro o ancho del<br>colector                                                                                                                                                                                                                                   | d2/B                                             | 0,189                             |                                                  | K = f(d2/B)                                                                                                                                                                                                                                            | 0,02                                                      | Determinación del coeficiente K1 para determinación caudal                                                                                                                                                                                                                                                                                                                                                               |                         |
| 24                                           | GOIEGIOI                                                                                                                                                                                                                                                                             | UZ/D                                             | J, 109                            | <del>                                     </del> | N - I(UZ/D)                                                                                                                                                                                                                                            | 0,02                                                      | K1 para determinación caudal<br>Caudal a trasnportar despues del                                                                                                                                                                                                                                                                                                                                                         |                         |
| 24                                           |                                                                                                                                                                                                                                                                                      | İ                                                |                                   | 1                                                | $Q = K \times (D^{8/3} \times i^{1/2})/n$                                                                                                                                                                                                              | 0,0732                                                    | vertedero lateral                                                                                                                                                                                                                                                                                                                                                                                                        | m <sup>3</sup> /s       |
| 25                                           | Relación longitud ancho del canal                                                                                                                                                                                                                                                    | L/B                                              | 17,14                             |                                                  | S. 11. (2. A) (1)                                                                                                                                                                                                                                      | -,                                                        | Valor a verificar en la tabla de la                                                                                                                                                                                                                                                                                                                                                                                      | /5                      |
| ļ                                            | Relación calado a energía específica                                                                                                                                                                                                                                                 | w                                                | 0,096                             |                                                  | n2 = f(L/B;w)                                                                                                                                                                                                                                          | 19,00                                                     | figura 5.16 pag 199 Metcalf y Eddy                                                                                                                                                                                                                                                                                                                                                                                       |                         |
| 26                                           | Diámetro de la tubería para Q sanitario                                                                                                                                                                                                                                              | Ds                                               | 0,340                             | m                                                |                                                                                                                                                                                                                                                        |                                                           | Relación par determinación de                                                                                                                                                                                                                                                                                                                                                                                            |                         |
| ļ                                            | Caudal Sanitario máximo                                                                                                                                                                                                                                                              | QS                                               | 0,054                             | m³/s                                             | $K = QS \times n/(Ds^{8/3} \times i^{1/2})$                                                                                                                                                                                                            | 0,1302                                                    | calado de agua en la tubería                                                                                                                                                                                                                                                                                                                                                                                             |                         |
|                                              |                                                                                                                                                                                                                                                                                      |                                                  |                                   |                                                  | i                                                                                                                                                                                                                                                      |                                                           | ĺ                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                       |
| Į                                            | Pendiente de la tubería o canal                                                                                                                                                                                                                                                      | i                                                | 0,0055                            | m/m                                              |                                                                                                                                                                                                                                                        |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |
|                                              | Pendiente de la tubería o canal<br>Rugosidad de la tubería o canal                                                                                                                                                                                                                   | i<br>n                                           | 0,0055<br>0,010                   | m/m                                              |                                                                                                                                                                                                                                                        |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |
| 27                                           |                                                                                                                                                                                                                                                                                      |                                                  |                                   | m/m                                              | VID. IIIA                                                                                                                                                                                                                                              | 0.45                                                      | Relación calado a diámetro ó                                                                                                                                                                                                                                                                                                                                                                                             |                         |
|                                              |                                                                                                                                                                                                                                                                                      |                                                  |                                   | m/m                                              | Y/B = f(K)                                                                                                                                                                                                                                             | 0,45                                                      | ancho                                                                                                                                                                                                                                                                                                                                                                                                                    | m                       |
| 27                                           |                                                                                                                                                                                                                                                                                      |                                                  |                                   | m/m                                              |                                                                                                                                                                                                                                                        |                                                           | ancho calado de agua en la tubería circular                                                                                                                                                                                                                                                                                                                                                                              |                         |
| 28                                           |                                                                                                                                                                                                                                                                                      |                                                  |                                   | m/m                                              | Y/B = f(K)<br>Y <sub>2</sub> = (Y/B) x B                                                                                                                                                                                                               | 0,15                                                      | ancho calado de agua en la tubería circular ó rectangular con caudal mínimo                                                                                                                                                                                                                                                                                                                                              | m<br>m/s                |
|                                              |                                                                                                                                                                                                                                                                                      |                                                  |                                   | m/m                                              | Y <sub>2</sub> = (Y/B) x B                                                                                                                                                                                                                             | 0,15<br>-0,02                                             | ancho calado de agua en la tubería circular ó rectangular con caudal mínimo Desnivel a que se debe colocar la                                                                                                                                                                                                                                                                                                            |                         |
| 28<br>29                                     | Rugosidad de la tubería o canal                                                                                                                                                                                                                                                      | n                                                | 0,010                             | m/m                                              |                                                                                                                                                                                                                                                        | 0,15                                                      | ancho calado de agua en la tubería circular ó rectangular con caudal mínimo Desnivel a que se debe colocar la t.sanitaria respescto a la t.principal                                                                                                                                                                                                                                                                     |                         |
| 28                                           |                                                                                                                                                                                                                                                                                      |                                                  |                                   | m/m                                              | Y <sub>2</sub> = (Y/B) x B<br>Δ = Y2 - Y                                                                                                                                                                                                               | 0,15<br>-0,02<br>0,05                                     | ancho calado de agua en la tubería circular ó rectangular con caudal mínimo Desnivel a que se debe colocar la t.sanitaria respescto a la t.principal Caudal máximo a llevar en la tubería                                                                                                                                                                                                                                | m/s                     |
| 28<br>29<br>30                               | Rugosidad de la tubería o canal  K para relación (d/D) <sub>max</sub> = 94%                                                                                                                                                                                                          | n<br>Kmax                                        | 0,010                             | m/m                                              | Y <sub>2</sub> = (Y/B) x B                                                                                                                                                                                                                             | 0,15<br>-0,02                                             | ancho calado de agua en la tubería circular ó rectangular con caudal mínimo Desnivel a que se debe colocar la t.sanitaria respescto a la t.principal Caudal máximo a llevar en la tubería sanitaria                                                                                                                                                                                                                      |                         |
| 28<br>29                                     | Rugosidad de la tubería o canal                                                                                                                                                                                                                                                      | n                                                | 0,010                             | m/m                                              | $Y_2 = (Y/B) \times B$<br>$\Delta = Y2 - Y$<br>Q-max = Kmax x Ds <sup>83</sup> x i <sup>1/2</sup> / n                                                                                                                                                  | 0,15<br>-0,02<br>0,05                                     | ancho calado de agua en la tubería circular ó rectangular con caudal mínimo Desnivel a que se debe colocar la t.sanitaria respescto a la t.principal Caudal máximo a llevar en la tubería                                                                                                                                                                                                                                | m/s                     |
| 28<br>29<br>30                               | Rugosidad de la tubería o canal  K para relación (d/D) <sub>max</sub> = 94%  K1 para determinar área para máximo                                                                                                                                                                     | n<br>Kmax                                        | 0,010                             | m/m                                              | Y <sub>2</sub> = (Y/B) x B<br>Δ = Y2 - Y                                                                                                                                                                                                               | 0,15<br>-0,02<br>0,05                                     | ancho calado de agua en la tubería circular ó rectangular con caudal mínimo Desnivel a que se debe colocar la t.sanitaria respescto a la t.principal Caudal máximo a llevar en la tubería sanitaria                                                                                                                                                                                                                      | m/s<br>m³/s             |
| 28<br>29<br>30                               | Rugosidad de la tubería o canal  K para relación (d/D) <sub>max</sub> = 94%  K1 para determinar área para máximo caudal                                                                                                                                                              | n<br>Kmax                                        | 0,010                             | m/m                                              | $Y_2 = (Y/B) \times B$<br>$\Delta = Y2 - Y$<br>Q-max = Kmax x Ds <sup>83</sup> x i <sup>1/2</sup> / n                                                                                                                                                  | 0,15<br>-0,02<br>0,05                                     | ancho calado de agua en la tubería circular ó rectangular con caudal mínimo Desnivel a que se debe colocar la t.sanitaria respescto a la t.principal Caudal máximo a llevar en la tubería sanitaria                                                                                                                                                                                                                      | m/s<br>m³/s             |
| 28<br>29<br>30<br>31                         | Rugosidad de la tubería o canal  K para relación (d/D) <sub>max</sub> = 94%  K1 para determinar área para máximo caudal                                                                                                                                                              | n<br>Kmax                                        | 0,010                             | m/m                                              | $Y_2 = (Y/B) \times B$<br>$\Delta = Y2 - Y$<br>Q-max = Kmax x Ds <sup>83</sup> x i <sup>1/2</sup> / n                                                                                                                                                  | 0,15<br>-0,02<br>0,05                                     | ancho calado de agua en la tubería circular ó rectangular con caudal mínimo Desnivel a que se debe colocar la t.sanitaria respescto a la t.principal Caudal máximo a llevar en la tubería sanitaria Velocidad con caudal máximo                                                                                                                                                                                          | m/s<br>m³/s             |
| 28<br>29<br>30<br>31                         | Rugosidad de la tubería o canal  K para relación (d/D) <sub>max</sub> = 94%  K1 para determinar área para máximo caudal                                                                                                                                                              | n<br>Kmax                                        | 0,010                             | m/m                                              | Y <sub>2</sub> = (Y/B) x B  Δ = Y2 - Y  Q-max = Kmax x Ds <sup>8/3</sup> x i <sup>1/2</sup> / n  V-max-s = Q-max/(K1 x Ds <sup>2</sup> )  Ymax = 0.94 x Ds                                                                                             | 0,15<br>-0,02<br>0,05<br>0,14<br>1,58                     | ancho calado de agua en la tubería circular ó rectangular con caudal mínimo Desnivel a que se debe colocar la t.sanitaria respescto a la t.principal Caudal máximo a llevar en la tubería sanitaria Velocidad con caudal máximo  Calado de agua a caudal máximo  Calado de agua a la salida del                                                                                                                          | m/s<br>m³/s<br>m/s      |
| 28<br>29<br>30<br>31<br>32<br>33             | Rugosidad de la tubería o canal  K para relación (d/D) <sub>max</sub> = 94%  K1 para determinar área para máximo caudal                                                                                                                                                              | n<br>Kmax                                        | 0,010                             | m/m                                              | $Y_2 = (Y/B) \times B$ $\Delta = Y2 - Y$ $Q-max = Kmax \times Ds^{8/3} \times i^{1/2} / n$ $V-max-s = Q-max/(K1 \times Ds^2)$                                                                                                                          | 0,15<br>-0,02<br>0,05<br>0,14<br>1,58                     | ancho calado de agua en la tubería circular ó rectangular con caudal mínimo Desnivel a que se debe colocar la t.sanitaria respescto a la t.principal Caudal máximo a llevar en la tubería sanitaria Velocidad con caudal máximo  Calado de agua a caudal máximo  Calado de agua a la salida del vertedero lateral.                                                                                                       | m/s<br>m³/s<br>m/s      |
| 28<br>29<br>30<br>31                         | Rugosidad de la tubería o canal  K para relación (d/D) <sub>max</sub> = 94%  K1 para determinar área para máximo caudal                                                                                                                                                              | n<br>Kmax                                        | 0,010                             | m/m                                              | $Y_2 = (Y/B) \times B$ $\Delta = Y2 - Y$ $Q-max = Kmax \times Ds^{8/3} \times i^{1/2}/i n$ $V-max-s = Q-max/(K1 \times Ds^2)$ $Ymax = 0.94 \times Ds$ $h2 = Ymax - Y_2$                                                                                | 0,15<br>-0,02<br>0,05<br>0,14<br>1,58<br>0,3196           | ancho calado de agua en la tubería circular o rectangular con caudal mínimo Desnivel a que se debe colocar la t.sanitaria respescto a la t.principal Caudal máximo a llevar en la tubería sanitaria Velocidad con caudal máximo  Calado de agua a caudal máximo Calado de agua a la salida del vertedero lateral. Calado de agua al ingreso del                                                                          | m/s m/s m³/s m/s        |
| 28<br>29<br>30<br>31<br>32<br>33<br>34       | Rugosidad de la tubería o canal  K para relación (d/D) <sub>max</sub> = 94%  K1 para determinar área para máximo caudal  Cálculo con la ecuación de Babbit                                                                                                                           | Kmax                                             | 0,010<br>0,3353<br>0,7662         |                                                  | Y <sub>2</sub> = (Y/B) x B  Δ = Y2 - Y  Q-max = Kmax x Ds <sup>8/3</sup> x i <sup>1/2</sup> / n  V-max-s = Q-max/(K1 x Ds <sup>2</sup> )  Ymax = 0.94 x Ds                                                                                             | 0,15<br>-0,02<br>0,05<br>0,14<br>1,58                     | ancho calado de agua en la tubería circular ó rectangular con caudal mínimo Desnivel a que se debe colocar la t.sanitaria respescto a la t.principal Caudal máximo a llevar en la tubería sanitaria Velocidad con caudal máximo  Calado de agua a caudal máximo  Calado de agua a la salida del vertedero lateral. Calado de agua a lingreso del vertedero lateral.                                                      | m/s m³/s m/s            |
| 28<br>29<br>30<br>31<br>32<br>33             | Rugosidad de la tubería o canal  K para relación (d/D) <sub>max</sub> = 94%  K1 para determinar área para máximo caudal  Cálculo con la ecuación de Babbit  Velocidad de aproximación con                                                                                            | n<br>Kmax                                        | 0,010                             | m/m                                              | Y <sub>2</sub> = (Y/B) x B  Δ = Y2 - Y  Q-max = Kmax x Ds <sup>8/3</sup> x i <sup>1/2</sup> / n  V-max-s = Q-max/(K1 x Ds <sup>2</sup> )  Ymax = 0.94 x Ds  h2 = Ymax - Y <sub>2</sub> h1 = H - Y 6 h1 = 0.94 x D - Y                                  | 0,15<br>-0,02<br>0,05<br>0,14<br>1,58<br>0,3196<br>0,1666 | ancho calado de agua en la tubería circular ó rectangular con caudal mínimo Desnivel a que se debe colocar la t.sanitaria respescto a la t.principal Caudal máximo a llevar en la tubería sanitaria Velocidad con caudal máximo  Calado de agua a caudal máximo  Calado de agua a la salida del vertedero lateral.  Calado de agua al ingreso del vertedero lateral.  Determinación de la longitud                       | m/s m³/s m/s m m        |
| 28<br>29<br>30<br>31<br>32<br>33<br>34<br>35 | Rugosidad de la tubería o canal  K para relación (d/D) <sub>max</sub> = 94%  K1 para determinar área para máximo caudal  Cálculo con la ecuación de Babbít  Velocidad de aproximación con caudal máximo                                                                              | n Kmax K1                                        | 0,010<br>0,3353<br>0,7662         |                                                  | $Y_2 = (Y/B) \times B$ $\Delta = Y2 - Y$ $Q-max = Kmax \times Ds^{8/3} \times i^{1/2}/i n$ $V-max-s = Q-max/(K1 \times Ds^2)$ $Ymax = 0.94 \times Ds$ $h2 = Ymax - Y_2$                                                                                | 0,15<br>-0,02<br>0,05<br>0,14<br>1,58<br>0,3196           | ancho calado de agua en la tubería circular ó rectangular con caudal mínimo Desnivel a que se debe colocar la t.sanitaria respescto a la t.principal Caudal máximo a llevar en la tubería sanitaria Velocidad con caudal máximo  Calado de agua a caudal máximo  Calado de agua a la salida del vertedero lateral. Calado de agua a lingreso del vertedero lateral.                                                      | m/s m³/s m/s m m        |
| 28 29 30 31 32 33 34 35 nsionar              | Rugosidad de la tubería o canal  K para relación (d/D) <sub>max</sub> = 94%  K1 para determinar área para máximo caudal  Cálculo con la ecuación de Babbit  Velocidad de aproximación con caudal máximo                                                                              | n Kmax K1 Vmax eria sanitaria                    | 0,010<br>0,3353<br>0,7662         | m/s                                              | Y <sub>2</sub> = (Y/B) x B  Δ = Y2 - Y  Q-max = Kmax x Ds <sup>8/3</sup> x i <sup>1/2</sup> / n  V-max-s = Q-max/(K1 x Ds <sup>2</sup> )  Ymax = 0.94 x Ds  h2 = Ymax - Y <sub>2</sub> h1 = H - Y 6 h1 = 0.94 x D - Y                                  | 0,15<br>-0,02<br>0,05<br>0,14<br>1,58<br>0,3196<br>0,1666 | ancho calado de agua en la tubería circular o rectangular con caudal mínimo Desnivel a que se debe colocar la t.sanitaria respescto a la t.principal Caudal máximo a llevar en la tubería sanitaria Velocidad con caudal máximo  Calado de agua a caudal máximo  Calado de agua a la salida del vertedero lateral.  Celado de agua al ingreso del vertedero lateral.  Determinación de la longitud del vertedero lateral | m/s m³/s m/s m m        |
| 28<br>29<br>30<br>31<br>32<br>33<br>34<br>35 | Rugosidad de la tubería o canal  K para relación (d/D) <sub>max</sub> = 94%  K1 para determinar área para máximo caudal  Cálculo con la ecuación de Babbit  Velocidad de aproximación con caudal máximo niento de la transición para giros de la tub Diámetro o base tubería ingreso | n Kmax K1 Vmax eria sanitaria B o D              | 0,010<br>0,3353<br>0,7662<br>2,97 | m/s                                              | Y <sub>2</sub> = (Y/B) x B  Δ = Y2 - Y  Q-max = Kmax x Ds <sup>83</sup> x i <sup>1/2</sup> / n  V-max-s = Q-max/(K1 x Ds <sup>2</sup> )  Ymax = 0,94 x Ds  h2 = Ymax - Y <sub>2</sub> h1 = H - Y 6 h1 = 0,94 x D - Y  L = 7,55 x Vmax x d x log(h1/h2) | 0,15 -0,02 0,05 0,14 1,58 0,3196 0,1666 0,553 8,18        | ancho calado de agua en la tubería circular ó rectangular con caudal mínimo Desnivel a que se debe colocar la t.sanitaria respescto a la t.principal Caudal máximo a llevar en la tubería sanitaria Velocidad con caudal máximo  Calado de agua a caudal máximo  Calado de agua a la salida del vertedero lateral.  Calado de agua al ingreso del vertedero lateral.  Determinación de la longitud                       | m/s  m³/s  m/s  m  m  m |
| 28 29 30 31 32 33 34 35 nsionar              | Rugosidad de la tubería o canal  K para relación (d/D) <sub>max</sub> = 94%  K1 para determinar área para máximo caudal  Cálculo con la ecuación de Babbit  Velocidad de aproximación con caudal máximo                                                                              | n Kmax K1 Vmax eria sanitaria                    | 0,010<br>0,3353<br>0,7662         | m/s                                              | Y <sub>2</sub> = (Y/B) x B  Δ = Y2 - Y  Q-max = Kmax x Ds <sup>8/3</sup> x i <sup>1/2</sup> / n  V-max-s = Q-max/(K1 x Ds <sup>2</sup> )  Ymax = 0.94 x Ds  h2 = Ymax - Y <sub>2</sub> h1 = H - Y 6 h1 = 0.94 x D - Y                                  | 0,15<br>-0,02<br>0,05<br>0,14<br>1,58<br>0,3196<br>0,1666 | ancho calado de agua en la tubería circular o rectangular con caudal mínimo Desnivel a que se debe colocar la t.sanitaria respescto a la t.principal Caudal máximo a llevar en la tubería sanitaria Velocidad con caudal máximo  Calado de agua a caudal máximo  Calado de agua a la salida del vertedero lateral.  Celado de agua al ingreso del vertedero lateral.  Determinación de la longitud del vertedero lateral | m/s m³/s m/s m m        |

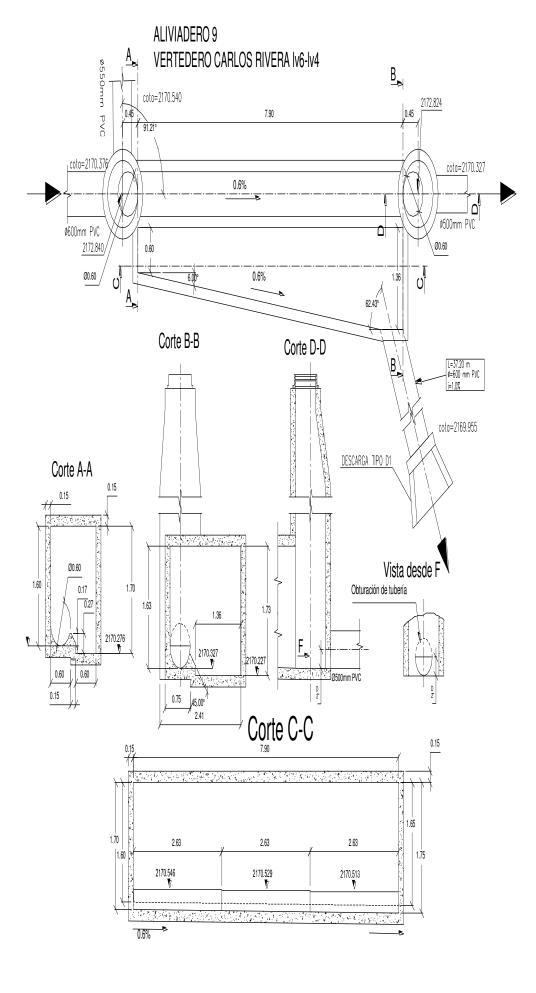
| PASO                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PARA CANAL                     | ES CIRCUL                                            | ANLOUR       | RECTANGULARES DOS TUBERIAS DE LL                                                                                                                                                                                                                                                                        | LOADA                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |
|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
|                                                                      | DATOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SIMBOLO                        | VALOR                                                | UNIDAD       | CRITERIO                                                                                                                                                                                                                                                                                                | CALCULO                                                                             | RESULTADO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | UNIDAD                |
| 37                                                                   | Relación diámetro tubería versus radio de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |                                                      |              |                                                                                                                                                                                                                                                                                                         |                                                                                     | Radio de curvatura en la tubería                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |
|                                                                      | curvatura recomendado                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | r/Ds                           | 2                                                    |              | r = 2 x Ds                                                                                                                                                                                                                                                                                              | 0,68                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |
| 38                                                                   | Angulo entre el colector principal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |                                                      |              |                                                                                                                                                                                                                                                                                                         |                                                                                     | Longitud de la curva                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |
|                                                                      | y la tubería sanitaria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ω                              | 0                                                    | grados       | Ic = ω x (r + Ds/2)/180                                                                                                                                                                                                                                                                                 | 0                                                                                   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | m                     |
| 39                                                                   | Coeficiente de pérdida por cambio de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                |                                                      |              |                                                                                                                                                                                                                                                                                                         |                                                                                     | Pérdida de carga porcambio de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |
|                                                                      | dirección según el ángulo de giro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | р                              | 0                                                    |              | $hf = p \times V-max-s^2/(2 \times g)$                                                                                                                                                                                                                                                                  | 0,000                                                                               | dirección en el interior del colector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | m                     |
| 40                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                              |                                                      |              |                                                                                                                                                                                                                                                                                                         | -,                                                                                  | Pendiente en el canal de transición                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |
|                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                      |              | $i = (hf + \Delta)/(l + lc)$                                                                                                                                                                                                                                                                            | 1,41%                                                                               | por cambio de dirección y desnivel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | %                     |
|                                                                      | VERTEDERO CAMINERIAS Iv15 - Iv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14; ALV 5                      |                                                      |              | (m + 2)/(r + 10)                                                                                                                                                                                                                                                                                        | .,,                                                                                 | per cample de un cooleir y decimien                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,,,                   |
| 1                                                                    | Diámetro o ancho de la tubería UNO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DóB                            | 0,340                                                | m            |                                                                                                                                                                                                                                                                                                         |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |
|                                                                      | Altura del canal recatangular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Н                              | 0,000                                                | m            | †                                                                                                                                                                                                                                                                                                       |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |
|                                                                      | Pendiente de la tubería o canal UNO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ï                              | 0,000                                                | m/m          | Q-max1 = Kmax x D <sup>8/3</sup> x i <sup>1/2</sup> / n                                                                                                                                                                                                                                                 | 0,22                                                                                | Caudal máximo para canal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                      | m/m          | Q-max1 = Kmax x D*** x i***/ n                                                                                                                                                                                                                                                                          | 0,22                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3,                    |
|                                                                      | Rugosidad de la tubería o canal UNO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n                              | 0,010                                                | ļ            | 4                                                                                                                                                                                                                                                                                                       |                                                                                     | circular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m <sup>3</sup> /s     |
|                                                                      | K para relación (d/D) <sub>max</sub> = 94%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Kmax                           | 0,3353                                               |              |                                                                                                                                                                                                                                                                                                         |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |
| 2                                                                    | Diámetro o ancho de la tubería DOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DóB                            | 0,600                                                | m            |                                                                                                                                                                                                                                                                                                         |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |
|                                                                      | Altura del canal recatangular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Н                              | 0,000                                                | m            |                                                                                                                                                                                                                                                                                                         |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |
|                                                                      | Pendiente de la tubería o canal DOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | i                              | 0,006                                                | m/m          | Q-max2 = Kmax x D <sup>8/3</sup> x i <sup>1/2</sup> / n                                                                                                                                                                                                                                                 | 0,71                                                                                | Caudal máximo para canal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|                                                                      | Rugosidad de la tubería o canal DOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n                              | 0,009                                                |              |                                                                                                                                                                                                                                                                                                         |                                                                                     | circular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m <sup>3</sup> /s     |
|                                                                      | K para relación (d/D) <sub>max</sub> = 94%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Kmax                           | 0,3353                                               |              |                                                                                                                                                                                                                                                                                                         |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |
| 3                                                                    | Caudal pluvial a transportar las dos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                |                                                      | 1            |                                                                                                                                                                                                                                                                                                         |                                                                                     | Caudal máximo a transportar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |
| -                                                                    | tuberías para un período de 5 años                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Qmax-d                         | 547,79                                               | It/s         | Qmax = Qmax1 + Qmax2                                                                                                                                                                                                                                                                                    | 0,93                                                                                | las dos tuberías                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | m <sup>3</sup> /s     |
| 4                                                                    | Diámetro o ancho de la tubería                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DóB                            | 0,600                                                | m            | giriax giriaxi - giriaxi                                                                                                                                                                                                                                                                                | 0,00                                                                                | ide des taseride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 111 73                |
| -                                                                    | Pendiente de la tubería o canal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                              | 0,004                                                | m/m          | Q-max = Kmax x D <sup>8/3</sup> x i <sup>1/2</sup> / n                                                                                                                                                                                                                                                  | 0,57                                                                                | Caudal máximo para canal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                              | 0,009                                                | 111/111      | Q-max = Kmax x D x 1 / n                                                                                                                                                                                                                                                                                | 0,37                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3,                    |
|                                                                      | Rugosidad de la tubería o canal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n                              |                                                      | <u> </u>     | 4                                                                                                                                                                                                                                                                                                       |                                                                                     | circular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m <sup>3</sup> /s     |
|                                                                      | K para relación (d/D) <sub>max</sub> = 94%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Kmax                           | 0,3353                                               |              |                                                                                                                                                                                                                                                                                                         |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |
| 5                                                                    | K1 para calcular área para Qmax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | K1                             | 0,7662                                               |              |                                                                                                                                                                                                                                                                                                         | 0,28                                                                                | Area de sección transversal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |
|                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                      |              | Am = K1 x D <sup>2</sup>                                                                                                                                                                                                                                                                                | <u> </u>                                                                            | para caudal máximo tub. Circular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | m <sup>2</sup>        |
|                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                      | 1            |                                                                                                                                                                                                                                                                                                         | 1                                                                                   | Velocidad transversal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |
| L                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                      | <u> </u>     | Vmax = Qmax/A                                                                                                                                                                                                                                                                                           | 2,08                                                                                | con caudal máximo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | m/s                   |
| 6                                                                    | Altura del canal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Н                              | 0,000                                                | m            |                                                                                                                                                                                                                                                                                                         |                                                                                     | Determinación de Kmax para                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |
|                                                                      | Relación H/B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | H/B                            | 0,000                                                |              | Kmax = f(H/B)                                                                                                                                                                                                                                                                                           | canal circular                                                                      | canales rectangulares                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |
| 7                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                              | -,                                                   | 1            | ()                                                                                                                                                                                                                                                                                                      |                                                                                     | Caudal máximo a transportar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |
|                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                      |              | Q-max = Kmax x B <sup>8/3</sup> x i <sup>1/2</sup> / n                                                                                                                                                                                                                                                  | canal circular                                                                      | para tubería rectangular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m <sup>3</sup> /s     |
| 8                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                      | <del> </del> | Q-IIIaX - KIIIaX X B X I / II                                                                                                                                                                                                                                                                           | cariai circaiai                                                                     | Velocidad transversal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 111 /5                |
| 0                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                      |              | V 0(/D11)                                                                                                                                                                                                                                                                                               |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |
| _                                                                    | 0 110 11 11 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                              |                                                      |              | Vmax = Q-max/(B x H)                                                                                                                                                                                                                                                                                    | canal circular                                                                      | con caudal máximo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | m/s                   |
| 9                                                                    | Caudal Sanitario Medio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Qs                             | 25,230                                               | lt/s         |                                                                                                                                                                                                                                                                                                         |                                                                                     | Caudal máximo a transportar en                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |
|                                                                      | Relación de dilución entre 2,5 y 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R                              | 3,000                                                |              | QS = R x Qs/1000                                                                                                                                                                                                                                                                                        | 0,076                                                                               | tubería sanitaria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | m³/s                  |
| 10                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                      |              |                                                                                                                                                                                                                                                                                                         |                                                                                     | Relación par determinación de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |
|                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                      |              | $K = QS \times n/(D^{8/3} \times i^{1/2})$                                                                                                                                                                                                                                                              | 0,0443                                                                              | calado de agua en la tubería                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |
| 11                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                      | Ĭ .          |                                                                                                                                                                                                                                                                                                         |                                                                                     | Relación calado a diámetro ó                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |
|                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                      |              | Y/B = f(K)                                                                                                                                                                                                                                                                                              | 0,25                                                                                | ancho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |
| 12                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                      |              | ` '                                                                                                                                                                                                                                                                                                     |                                                                                     | calado de agua en la tubería circular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |
|                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                      |              | Y = (Y/B) x B                                                                                                                                                                                                                                                                                           | 0,15                                                                                | ó rectangular con caudal mínimo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | m                     |
| 13                                                                   | Determinación del coeficiente K1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                                      | 1            | 1 - (11B) X B                                                                                                                                                                                                                                                                                           | 0,13                                                                                | Area de sección transversal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - ""                  |
| 13                                                                   | Determinación del coenciente K i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 144 (04/D)                     | 0.45                                                 |              | =2                                                                                                                                                                                                                                                                                                      | 0.0550                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     |
|                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | K1 = f(Y/B)                    | 0,15                                                 | <u> </u>     | A = K1 x D <sup>2</sup>                                                                                                                                                                                                                                                                                 | 0,0553                                                                              | en tubería circual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | m <sup>2</sup>        |
| 14                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                      |              |                                                                                                                                                                                                                                                                                                         |                                                                                     | Velocidad transversal en la                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |
|                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                      |              | V = Q/A                                                                                                                                                                                                                                                                                                 | 1,37                                                                                | tubería circual con caudal mínimo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |
| 15                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                      |              |                                                                                                                                                                                                                                                                                                         |                                                                                     | Velocidad transversal en la tubería                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |
|                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                      | 456,69       | $V = Q/(B \times Y)$                                                                                                                                                                                                                                                                                    | canal circular                                                                      | rectangular con caudal mínimo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | m                     |
|                                                                      | Cálculo con la ecuación de Ackers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |                                                      | 65,87        |                                                                                                                                                                                                                                                                                                         |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |
| 16                                                                   | Velocidad con caudal máximo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Vn                             | 2,075                                                | m/s          |                                                                                                                                                                                                                                                                                                         |                                                                                     | Cálculo de la energía específica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |
|                                                                      | Coeficiente corrección energía cinetica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\alpha_1$                     | 1,200                                                | Ĭ .          | $Ew = \alpha \times Vn^{2}/2g + (dn - Y)$                                                                                                                                                                                                                                                               |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |
|                                                                      | Aceleración de la gravedad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | g                              | 9,810                                                | m/s          | , , ,                                                                                                                                                                                                                                                                                                   | 0,67                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | m                     |
|                                                                      | Altura del canal para Qmáximo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | dn                             | 0,560                                                | m            | 1                                                                                                                                                                                                                                                                                                       |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |
| 17                                                                   | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |                                | -,                                                   | 1            |                                                                                                                                                                                                                                                                                                         |                                                                                     | Relación calado a energía                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |
| 17                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                      |              | (w=Y/Ew) < 0,6                                                                                                                                                                                                                                                                                          | 0,22                                                                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |
| 18                                                                   | Relación entre h1 y h2 (calado de ingreso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n                              | 17,000                                               | 1            | $L_{\gamma} = 2.03 \times B \times (2.828 \times \sqrt{(n_{\gamma} - 0.4)(1 - 0.4 w)} +$                                                                                                                                                                                                                | 0,22                                                                                | específica<br>Longitud requerida para el                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| 10                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n <sub>2</sub>                 | 17,000                                               |              |                                                                                                                                                                                                                                                                                                         |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |
|                                                                      | y calado de salida)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |                                                      |              | $+ 0.31 \text{ w} - 0.984 \text{ ar cos } \sqrt{(0.4/n,)} + 0.065$                                                                                                                                                                                                                                      | 8,60                                                                                | vertedero                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | m                     |
| 19                                                                   | Coeficiente de corrección energía cinética                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\alpha_2$                     | 1,400                                                |              |                                                                                                                                                                                                                                                                                                         |                                                                                     | Determinación de la velocidad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |
|                                                                      | Coeficiente de corrección energía presiones                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | α <sub>2</sub> `               | 0,950                                                |              | $V2 = ((2g/\alpha_2) (Ew - \alpha_2' x Ew/(2 x n_2)))^{0.5}$                                                                                                                                                                                                                                            | 3,03                                                                                | en el extremo inferior del vertedro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | m/s                   |
| 20                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                      | Ĭ .          |                                                                                                                                                                                                                                                                                                         |                                                                                     | Altura del calado de agua en el                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |
|                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                      |              | h1 = 0,5 x Ew                                                                                                                                                                                                                                                                                           | 0,34                                                                                | vertedero al ingreso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | m                     |
| 21                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                      | Ì            | · ·                                                                                                                                                                                                                                                                                                     | i                                                                                   | Altura del calado de agua en el                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |
|                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                      | 1            | h2 = h1/n <sub>2</sub>                                                                                                                                                                                                                                                                                  | 0,02                                                                                | vertedero a la salida                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | m                     |
| 22                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                      | <b>†</b>     |                                                                                                                                                                                                                                                                                                         | 5,52                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <del></del>           |
|                                                                      | İ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                              |                                                      |              |                                                                                                                                                                                                                                                                                                         |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |
|                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                      |              | d2 = V + h2                                                                                                                                                                                                                                                                                             | 0.17                                                                                | Calado de agua a la salida<br>del vertedero lateral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | m                     |
|                                                                      | Relación calado a diámetro o ancho dol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                |                                                      |              | d2 = Y + h2                                                                                                                                                                                                                                                                                             | 0,17                                                                                | del vertedero lateral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | m                     |
| 23                                                                   | Relación calado a diámetro o ancho del                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 42/B                           | 0.583                                                |              |                                                                                                                                                                                                                                                                                                         |                                                                                     | del vertedero lateral  Determinación del coeficiente                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | m                     |
| 23                                                                   | Relación calado a diámetro o ancho del colector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d2/B                           | 0,283                                                |              | d2 = Y + h2<br>K = f(d2/B)                                                                                                                                                                                                                                                                              | 0,17<br><b>0,05</b>                                                                 | del vertedero lateral  Determinación del coeficiente  K1 para determinación caudal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | m                     |
|                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d2/B                           | 0,283                                                |              | K = f(d2/B)                                                                                                                                                                                                                                                                                             | 0,05                                                                                | del vertedero lateral  Determinación del coeficiente K1 para determinación caudal  Caudal a trasnportar despues del                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |
| 23                                                                   | colector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |                                                      |              |                                                                                                                                                                                                                                                                                                         |                                                                                     | del vertedero lateral Determinación del coeficiente K1 para determinación caudal Caudal a trasnportar despues del vertedero lateral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | m<br>m³/s             |
| 23                                                                   | colector  Relación longitud ancho del canal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | L/B                            | 14,33                                                |              | $K = f(d2/B)$ $Q = K \times (D^{8/3} \times i^{1/2})/n$                                                                                                                                                                                                                                                 | 0,05                                                                                | del vertedero lateral Determinación del coeficiente K1 para determinación caudal Caudal a trasnportar despues del vertedero lateral Valor a verificar en la tabla de la                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |
| 23<br>24<br>25                                                       | colector  Relación longitud ancho del canal Relación calado a energía especifica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L/B<br>w                       | 14,33<br>0,2227                                      |              | K = f(d2/B)                                                                                                                                                                                                                                                                                             | 0,05                                                                                | del vertedero lateral Determinación del coeficiente K1 para determinación caudal Caudal a trasnportar despues del vertedero lateral Valor a verificar en la tabla de la figura 5.16 pag 199 Metcalf y Eddy                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |
| 23                                                                   | colector  Relación longitud ancho del canal Relación calado a energía específica Diámetro de la tubería para Q sanitario                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | L/B<br>w<br>Ds                 | 14,33<br>0,2227<br><b>0,400</b>                      | m            | $K = f(d2/B)$ $Q = K \times (D^{8/3} \times i^{1/2})/n$ $n2 = f(L/B; w)$                                                                                                                                                                                                                                | 0,05<br>0,0911<br>16,80                                                             | del vertedero lateral Determinación del coeficiente K1 para determinación caudal Caudal a trasnportar despues del vertedero lateral Valor a verificar en la tabla de la figura 5.16 pag 199 Metcalf y Eddy Relación par determinación de                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| 23<br>24<br>25                                                       | colector  Relación longitud ancho del canal Relación calado a energía especifica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L/B<br>w                       | 14,33<br>0,2227<br>0,400<br>0,076                    | m<br>m³/s    | $K = f(d2/B)$ $Q = K \times (D^{8/3} \times i^{1/2})/n$                                                                                                                                                                                                                                                 | 0,05                                                                                | del vertedero lateral Determinación del coeficiente K1 para determinación caudal Caudal a trasnportar despues del vertedero lateral Valor a verificar en la tabla de la figura 5.16 pag 199 Metcalf y Eddy                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |
| 23<br>24<br>25                                                       | colector  Relación longitud ancho del canal Relación calado a energía específica Diámetro de la tubería para Q sanitario                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | L/B<br>w<br>Ds                 | 14,33<br>0,2227<br><b>0,400</b>                      |              | $K = f(d2/B)$ $Q = K \times (D^{8/3} \times i^{1/2})/n$ $n2 = f(L/B; w)$                                                                                                                                                                                                                                | 0,05<br>0,0911<br>16,80                                                             | del vertedero lateral Determinación del coeficiente K1 para determinación caudal Caudal a trasnportar despues del vertedero lateral Valor a verificar en la tabla de la figura 5.16 pag 199 Metcalf y Eddy Relación par determinación de                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| 23<br>24<br>25                                                       | colector  Relación longitud ancho del canal Relación calado a energía específica Diàmetro de la tubería para Q sanitario Caudal Sanitario máximo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L/B<br>w<br>Ds<br>QS           | 14,33<br>0,2227<br>0,400<br>0,076                    | m³/s         | $K = f(d2/B)$ $Q = K \times (D^{8/3} \times i^{1/2})/n$ $n2 = f(L/B; w)$                                                                                                                                                                                                                                | 0,05<br>0,0911<br>16,80                                                             | del vertedero lateral Determinación del coeficiente K1 para determinación caudal Caudal a trasnportar despues del vertedero lateral Valor a verificar en la tabla de la figura 5.16 pag 199 Metcalf y Eddy Relación par determinación de                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| 23<br>24<br>25                                                       | colector  Relación longitud ancho del canal Relación calado a energía específica Diámetro de la tubería para Q sanitario Caudal Sanitario máximo Pendiente de la tubería o canal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L/B<br>w<br>Ds<br>QS<br>i      | 14,33<br>0,2227<br>0,400<br>0,076<br>0,0036          | m³/s         | $K = f(d2/B)$ $Q = K \times (D^{8/3} \times i^{1/2})/n$ $n2 = f(L/B; w)$                                                                                                                                                                                                                                | 0,05<br>0,0911<br>16,80                                                             | del vertedero lateral Determinación del coeficiente K1 para determinación caudal Caudal a trasnportar despues del vertedero lateral Valor a verificar en la tabla de la figura 5.16 pag 199 Metcalf y Eddy Relación par determinación de                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| 23<br>24<br>25<br>26                                                 | colector  Relación longitud ancho del canal Relación calado a energía específica Diámetro de la tubería para Q sanitario Caudal Sanitario máximo Pendiente de la tubería o canal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L/B<br>w<br>Ds<br>QS<br>i      | 14,33<br>0,2227<br>0,400<br>0,076<br>0,0036          | m³/s         | $K = f(d2/B)$ $Q = K \times (D^{8/3} \times i^{1/2})/n$ $n2 = f(L/B; w)$                                                                                                                                                                                                                                | 0,05<br>0,0911<br>16,80                                                             | del vertedero lateral Determinación del coeficiente K1 para determinación caudal Caudal a trasnportar despues del vertedero lateral Valor a verificar en la tabla de la figura 5.16 pag 199 Metcalf y Eddy Relación par determinación de calado de agua en la tubería                                                                                                                                                                                                                                                                                                                                                                                                   |                       |
| 23<br>24<br>25<br>26                                                 | colector  Relación longitud ancho del canal Relación calado a energía específica Diámetro de la tubería para Q sanitario Caudal Sanitario máximo Pendiente de la tubería o canal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L/B<br>w<br>Ds<br>QS<br>i      | 14,33<br>0,2227<br>0,400<br>0,076<br>0,0036          | m³/s         | $K = f(d2/B)$ $Q = K \times (D^{8/3} \times i^{1/2})/n$ $n2 = f(L/B; w)$ $K = QS \times n/(Ds^{8/3} \times i^{1/2})$                                                                                                                                                                                    | 0,05<br>0,0911<br>16,80<br>0,1307                                                   | del vertedero lateral Determinación del coeficiente K1 para determinación caudal Caudal a trasnportar despues del vertedero lateral Valor a verificar en la tabla de la figura 5.16 pag 199 Metcalf y Eddy Relación par determinación de calado de agua en la tubería  Relación calado a diámetro ó ancho                                                                                                                                                                                                                                                                                                                                                               | m³/s                  |
| 23<br>24<br>25<br>26<br>27                                           | colector  Relación longitud ancho del canal Relación calado a energía específica Diámetro de la tubería para Q sanitario Caudal Sanitario máximo Pendiente de la tubería o canal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L/B<br>w<br>Ds<br>QS<br>i      | 14,33<br>0,2227<br>0,400<br>0,076<br>0,0036          | m³/s         | $K = f(d2/B)$ $Q = K \times (D^{8/3} \times i^{1/2})/n$ $n2 = f(L/B;w)$ $K = QS \times n/(Ds^{8/3} \times i^{1/2})$ $Y/B = f(K)$                                                                                                                                                                        | 0,05<br>0,0911<br>16,80<br>0,1307                                                   | del vertedero lateral Determinación del coeficiente K1 para determinación caudal Caudal a trasnportar despues del vertedero lateral Valor a verificar en la tabla de la figura 5.16 pag 199 Metcalf y Eddy Relación par determinación de calado de agua en la tubería  Relación calado a diámetro ó ancho calado de agua en la tubería circular                                                                                                                                                                                                                                                                                                                         | m³/s                  |
| 23<br>24<br>25<br>26<br>27<br>28                                     | colector  Relación longitud ancho del canal Relación calado a energía específica Diámetro de la tubería para Q sanitario Caudal Sanitario máximo Pendiente de la tubería o canal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L/B<br>w<br>Ds<br>QS<br>i      | 14,33<br>0,2227<br>0,400<br>0,076<br>0,0036          | m³/s         | $K = f(d2/B)$ $Q = K \times (D^{8/3} \times i^{1/2})/n$ $n2 = f(L/B; w)$ $K = QS \times n/(Ds^{8/3} \times i^{1/2})$                                                                                                                                                                                    | 0,05<br>0,0911<br>16,80<br>0,1307<br>0,45<br>0,18                                   | del vertedero lateral Determinación del coeficiente K1 para determinación caudal Caudal a trasnportar despues del vertedero lateral Valor a verificar en la tabla de la figura 5.16 pag 199 Metcalf y Eddy Relación par determinación de calado de agua en la tubería  Relación calado a diámetro ó ancho calado de agua en la tubería circular ó rectangular con caudal mínimo                                                                                                                                                                                                                                                                                         | m³/s                  |
| 23<br>24<br>25<br>26<br>27                                           | colector  Relación longitud ancho del canal Relación calado a energía específica Diámetro de la tubería para Q sanitario Caudal Sanitario máximo Pendiente de la tubería o canal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L/B<br>w<br>Ds<br>QS<br>i      | 14,33<br>0,2227<br>0,400<br>0,076<br>0,0036          | m³/s         | $K = f(d2/B)$ $Q = K \times (D^{8/3} \times i^{1/2})/n$ $n2 = f(L/B;w)$ $K = QS \times n/(Ds^{8/3} \times i^{1/2})$ $Y/B = f(K)$ $Y_2 = (Y/B) \times B$                                                                                                                                                 | 0,05<br>0,0911<br>16,80<br>0,1307<br>0,45<br>0,18<br>0,00                           | del vertedero lateral Determinación del coeficiente K1 para determinación caudal Caudal a trasnportar despues del vertedero lateral Valor a verificar en la tabla de la figura 5.16 pag 199 Metcalf y Eddy Relación par determinación de calado de agua en la tubería  Relación calado a diámetro ó ancho calado de agua en la tubería circular ó rectangular con caudal mínimo Desnivel a que se debe colocar la                                                                                                                                                                                                                                                       | m³/s                  |
| 23<br>24<br>25<br>26<br>27<br>28<br>29                               | colector  Relación longitud ancho del canal Relación calado a energía específica Diámetro de la tubería para Q sanitario Caudal Sanitario máximo Pendiente de la tubería o canal Rugosidad de la tubería o canal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | UB<br>W<br>Ds<br>QS<br>i       | 14,33<br>0,2227<br>0,400<br>0,076<br>0,0036<br>0,009 | m³/s         | $K = f(d2/B)$ $Q = K \times (D^{8/3} \times i^{1/2})/n$ $n2 = f(L/B;w)$ $K = QS \times n/(Ds^{8/3} \times i^{1/2})$ $Y/B = f(K)$                                                                                                                                                                        | 0,05<br>0,0911<br>16,80<br>0,1307<br>0,45<br>0,18                                   | del vertedero lateral Determinación del coeficiente K1 para determinación caudal Caudal a trasnportar despues del vertedero lateral Valor a verificar en la tabla de la figura 5.16 pag 199 Metcalf y Eddy Relación par determinación de calado de agua en la tubería  Relación calado a diámetro ó ancho calado de agua en la tubería circular ó rectangular con caudal mínimo Desnivel a que se debe colocar la t.sanitaria respescto a la t.principal                                                                                                                                                                                                                | m³/s                  |
| 23<br>24<br>25<br>26<br>27<br>28                                     | colector  Relación longitud ancho del canal Relación calado a energía específica Diámetro de la tubería para Q sanitario Caudal Sanitario máximo Pendiente de la tubería o canal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L/B<br>w<br>Ds<br>QS<br>i      | 14,33<br>0,2227<br>0,400<br>0,076<br>0,0036          | m³/s         | $K = f(d2/B)$ $Q = K \times (D^{8/3} \times i^{1/2})/n$ $n2 = f(L/B; w)$ $K = QS \times n/(Ds^{8/3} \times i^{1/2})$ $Y/B = f(K)$ $Y_2 = (Y/B) \times B$ $\Delta = Y2 - Y$                                                                                                                              | 0,05<br>0,0911<br>16,80<br>0,1307<br>0,45<br>0,18<br>0,00<br>0,03                   | del vertedero lateral Determinación del coeficiente K1 para determinación caudal Caudal a trasnportar despues del vertedero lateral Valor a verificar en la tabla de la figura 5.16 pag 199 Metcalf y Eddy Relación par determinación de calado de agua en la tubería  Relación calado a diámetro ó ancho calado de agua en la tubería circular ó rectangular con caudal mínimo Desnivel a que se debe colocar la t.sanitaria respescto a la t.principal Caudal máximo a llevar en la tubería                                                                                                                                                                           | m³/s                  |
| 23<br>24<br>25<br>26<br>27<br>28<br>29<br>30                         | colector  Relación longitud ancho del canal Relación calado a energía específica Diámetro de la tubería para Q sanitario Caudal Sanitario máximo Pendiente de la tubería o canal Rugosidad de la tubería o canal  K para relación (d/D) <sub>max</sub> = 94%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | L/B<br>w<br>Ds<br>QS<br>i<br>n | 14,33<br>0,2227<br>0,400<br>0,076<br>0,0036<br>0,009 | m³/s         | $K = f(d2/B)$ $Q = K \times (D^{8/3} \times i^{1/2})/n$ $n2 = f(L/B;w)$ $K = QS \times n/(Ds^{8/3} \times i^{1/2})$ $Y/B = f(K)$ $Y_2 = (Y/B) \times B$                                                                                                                                                 | 0,05<br>0,0911<br>16,80<br>0,1307<br>0,45<br>0,18<br>0,00                           | del vertedero lateral Determinación del coeficiente K1 para determinación caudal Caudal a trasnportar despues del vertedero lateral Valor a verificar en la tabla de la figura 5.16 pag 199 Metcalf y Eddy Relación par determinación de calado de agua en la tubería  Relación calado a diámetro ó ancho calado de agua en la tubería circular ó rectangular con caudal mínimo Desnivel a que se debe colocar la t.sanitaria respescto a la t.principal Caudal máximo a llevar en la tubería sanitaria                                                                                                                                                                 | m³/s                  |
| 23<br>24<br>25<br>26<br>27<br>28<br>29                               | colector  Relación longitud ancho del canal Relación calado a energía específica Diámetro de la tubería para Q sanitario Caudal Sanitario máximo Pendiente de la tubería o canal Rugosidad de la tubería o canal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | UB<br>W<br>Ds<br>QS<br>i       | 14,33<br>0,2227<br>0,400<br>0,076<br>0,0036<br>0,009 | m³/s         | $K = f(d2/B)$ $Q = K \times (D^{8/3} \times i^{1/2})/n$ $n2 = f(L/B; w)$ $K = QS \times n/(Ds^{8/3} \times i^{1/2})$ $Y/B = f(K)$ $Y_2 = (Y/B) \times B$ $\Delta = Y2 - Y$                                                                                                                              | 0,05<br>0,0911<br>16,80<br>0,1307<br>0,45<br>0,18<br>0,00<br>0,03                   | del vertedero lateral Determinación del coeficiente K1 para determinación caudal Caudal a trasnportar despues del vertedero lateral Valor a verificar en la tabla de la figura 5.16 pag 199 Metcalf y Eddy Relación par determinación de calado de agua en la tubería  Relación calado a diámetro ó ancho calado de agua en la tubería circular ó rectangular con caudal mínimo Desnivel a que se debe colocar la t.sanitaria respescto a la t.principal Caudal máximo a llevar en la tubería                                                                                                                                                                           | m³/s                  |
| 23<br>24<br>25<br>26<br>27<br>28<br>29<br>30                         | colector  Relación longitud ancho del canal Relación calado a energía específica Diámetro de la tubería para Q sanitario Caudal Sanitario máximo Pendiente de la tubería o canal Rugosidad de la tubería o canal  K para relación (d/D) <sub>max</sub> = 94%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | L/B<br>w<br>Ds<br>QS<br>i<br>n | 14,33<br>0,2227<br>0,400<br>0,076<br>0,0036<br>0,009 | m³/s         | $K = f(d2/B)$ $Q = K \times (D^{8/3} \times i^{1/2})/n$ $n2 = f(L/B; w)$ $K = QS \times n/(Ds^{8/3} \times i^{1/2})$ $Y/B = f(K)$ $Y_2 = (Y/B) \times B$ $\Delta = Y2 - Y$                                                                                                                              | 0,05<br>0,0911<br>16,80<br>0,1307<br>0,45<br>0,18<br>0,00<br>0,03                   | del vertedero lateral Determinación del coeficiente K1 para determinación caudal Caudal a trasnportar despues del vertedero lateral Valor a verificar en la tabla de la figura 5.16 pag 199 Metcalf y Eddy Relación par determinación de calado de agua en la tubería  Relación calado a diámetro ó ancho calado de agua en la tubería circular ó rectangular con caudal mínimo Desnivel a que se debe colocar la t.sanitaria respescto a la t.principal Caudal máximo a llevar en la tubería sanitaria                                                                                                                                                                 | m³/s                  |
| 23<br>24<br>25<br>26<br>27<br>28<br>29<br>30                         | colector  Relación longitud ancho del canal Relación calado a energía específica Diámetro de la tubería para Q sanitario Caudal Sanitario máximo Pendiente de la tubería o canal Rugosidad de la tubería o canal  Kuposidad de la tubería o canal  K para relación (d/D) <sub>max</sub> = 94%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | L/B<br>w<br>Ds<br>QS<br>i<br>n | 14,33<br>0,2227<br>0,400<br>0,076<br>0,0036<br>0,009 | m³/s         | $K = f(d2/B)$ $Q = K \times (D^{8/3} \times i^{1/2})/n$ $n2 = f(L/B;w)$ $K = QS \times n/(Ds^{8/3} \times i^{1/2})$ $Y/B = f(K)$ $Y_2 = (Y/B) \times B$ $\Delta = Y2 - Y$ $Q-max = Kmax \times Ds^{8/3} \times i^{1/2}/n$                                                                               | 0,05<br>0,0911<br>16,80<br>0,1307<br>0,45<br>0,18<br>0,00<br>0,03                   | del vertedero lateral Determinación del coeficiente K1 para determinación caudal Caudal a trasnportar despues del vertedero lateral Valor a verificar en la tabla de la figura 5.16 pag 199 Metcalf y Eddy Relación par determinación de calado de agua en la tubería  Relación calado a diámetro ó ancho calado de agua en la tubería circular ó rectangular con caudal mínimo Desnivel a que se debe colocar la t.sanitaria respescto a la t.principal Caudal máximo a llevar en la tubería sanitaria                                                                                                                                                                 | m³/s  m m/s           |
| 23<br>24<br>25<br>26<br>27<br>28<br>29<br>30                         | colector  Relación longitud ancho del canal Relación calado a energía específica Diámetro de la tubería para Q sanitario Caudal Sanitario máximo Pendiente de la tubería o canal Rugosidad de la tubería o canal  K para relación (d/D) <sub>max</sub> = 94%  K1 para determinar área para máximo caudal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | L/B<br>w<br>Ds<br>QS<br>i<br>n | 14,33<br>0,2227<br>0,400<br>0,076<br>0,0036<br>0,009 | m³/s         | $K = f(d2/B)$ $Q = K \times (D^{8/3} \times i^{1/2})/n$ $n2 = f(L/B;w)$ $K = QS \times n/(Ds^{8/3} \times i^{1/2})$ $Y/B = f(K)$ $Y_2 = (Y/B) \times B$ $\Delta = Y2 - Y$ $Q-max = Kmax \times Ds^{8/3} \times i^{1/2}/n$                                                                               | 0,05<br>0,0911<br>16,80<br>0,1307<br>0,45<br>0,18<br>0,00<br>0,03                   | del vertedero lateral Determinación del coeficiente K1 para determinación caudal Caudal a trasnportar despues del vertedero lateral Valor a verificar en la tabla de la figura 5.16 pag 199 Metcalf y Eddy Relación par determinación de calado de agua en la tubería  Relación calado a diámetro ó ancho calado de agua en la tubería circular ó rectangular con caudal mínimo Desnivel a que se debe colocar la t.sanitaria respescto a la t.principal Caudal máximo a llevar en la tubería sanitaria                                                                                                                                                                 | m³/s  m m/s           |
| 23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31                   | colector  Relación longitud ancho del canal Relación calado a energía específica Diámetro de la tubería para Q sanitario Caudal Sanitario máximo Pendiente de la tubería o canal Rugosidad de la tubería o canal  K para relación (d/D) <sub>max</sub> = 94%  K1 para determinar área para máximo caudal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | L/B<br>w<br>Ds<br>QS<br>i<br>n | 14,33<br>0,2227<br>0,400<br>0,076<br>0,0036<br>0,009 | m³/s         | $K = f(d2/B)$ $Q = K \times (D^{8/3} \times i^{1/2})/n$ $n2 = f(L/B; w)$ $K = QS \times n/(Ds^{8/3} \times i^{1/2})$ $Y/B = f(K)$ $Y_2 = (Y/B) \times B$ $\Delta = Y2 - Y$ $Q-max = Kmax \times Ds^{8/3} \times i^{1/2}/n$ $V-max-s = Q-max/(K1 \times Ds^2)$                                           | 0,05<br>0,0911<br>16,80<br>0,1307<br>0,45<br>0,18<br>0,00<br>0,03<br>0,1941<br>1,58 | del vertedero lateral Determinación del coeficiente K1 para determinación caudal Caudal a trasnportar despues del vertedero lateral Valor a verificar en la tabla de la figura 5.16 pag 199 Metcalf y Eddy Relación par determinación de calado de agua en la tubería  Relación calado a diámetro ó ancho calado de agua en la tubería circular ó rectangular con caudal mínimo Desnivel a que se debe colocar la t.sanitaria respescto a la t.principal Caudal máximo a llevar en la tubería sanitaria Velocidad con caudal máximo                                                                                                                                     | m³/s  m m/s  m/s      |
| 23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31                   | colector  Relación longitud ancho del canal Relación calado a energía específica Diámetro de la tubería para Q sanitario Caudal Sanitario máximo Pendiente de la tubería o canal Rugosidad de la tubería o canal  K para relación (d/D) <sub>max</sub> = 94%  K1 para determinar área para máximo caudal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | L/B<br>w<br>Ds<br>QS<br>i<br>n | 14,33<br>0,2227<br>0,400<br>0,076<br>0,0036<br>0,009 | m³/s         | $K = f(d2/B)$ $Q = K \times (D^{8/3} \times i^{1/2})/n$ $n2 = f(L/B;w)$ $K = QS \times n/(Ds^{8/3} \times i^{1/2})$ $Y/B = f(K)$ $Y_2 = (Y/B) \times B$ $\Delta = Y2 - Y$ $Q-max = Kmax \times Ds^{8/3} \times i^{1/2}/n$                                                                               | 0,05<br>0,0911<br>16,80<br>0,1307<br>0,45<br>0,18<br>0,00<br>0,03                   | del vertedero lateral Determinación del coeficiente K1 para determinación caudal Caudal a trasnportar despues del vertedero lateral Valor a verificar en la tabla de la figura 5.16 pag 199 Metcalf y Eddy Relación par determinación de calado de agua en la tubería  Relación calado a diámetro ó ancho calado de agua en la tubería circular ó rectangular con caudal mínimo Desnivel a que se debe colocar la t.sanitaria respescto a la t.principal Caudal máximo a llevar en la tubería Velocidad con caudal máximo  Calado de agua a caudal máximo                                                                                                               | m³/s  m m/s           |
| 23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31                   | colector  Relación longitud ancho del canal Relación calado a energía específica Diámetro de la tubería para Q sanitario Caudal Sanitario máximo Pendiente de la tubería o canal Rugosidad de la tubería o canal  K para relación (d/D) <sub>max</sub> = 94%  K1 para determinar área para máximo caudal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | L/B<br>w<br>Ds<br>QS<br>i<br>n | 14,33<br>0,2227<br>0,400<br>0,076<br>0,0036<br>0,009 | m³/s         | $K = f(d2/B)$ $Q = K \times (D^{8/3} \times i^{1/2})/n$ $n2 = f(L/B; w)$ $K = QS \times n/(DS^{8/3} \times i^{1/2})$ $Y/B = f(K)$ $Y_2 = (Y/B) \times B$ $\Delta = Y2 - Y$ $Q-max = Kmax \times DS^{8/3} \times i^{1/2}/n$ $V-max-s = Q-max/(K1 \times Ds^2)$ $Ymax = 0.94 \times DS$                   | 0,05<br>0,0911<br>16,80<br>0,1307<br>0,45<br>0,18<br>0,00<br>0,03<br>0,1941<br>1,58 | del vertedero lateral Determinación del coeficiente K1 para determinación caudal Caudal a trasnportar despues del vertedero lateral Valor a verificar en la tabla de la figura 5.16 pag 199 Metcalf y Eddy Relación par determinación de calado de agua en la tubería  Relación calado a diámetro ó ancho calado de agua en la tubería circular ó rectangular con caudal mínimo Desnivel a que se debe colocar la t.sanitaria respescto a la t.principal Caudal máximo a llevar en la tubería  Velocidad con caudal máximo  Calado de agua a caudal máximo  Calado de agua a caudal máximo                                                                              | m³/s  m m/s  m³/s     |
| 23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32             | colector  Relación longitud ancho del canal Relación calado a energía específica Diámetro de la tubería para Q sanitario Caudal Sanitario máximo Pendiente de la tubería o canal Rugosidad de la tubería o canal  K para relación (d/D) <sub>max</sub> = 94%  K1 para determinar área para máximo caudal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | L/B<br>w<br>Ds<br>QS<br>i<br>n | 14,33<br>0,2227<br>0,400<br>0,076<br>0,0036<br>0,009 | m³/s         | $K = f(d2/B)$ $Q = K \times (D^{8/3} \times i^{1/2})/n$ $n2 = f(L/B; w)$ $K = QS \times n/(Ds^{8/3} \times i^{1/2})$ $Y/B = f(K)$ $Y_2 = (Y/B) \times B$ $\Delta = Y2 - Y$ $Q-max = Kmax \times Ds^{8/3} \times i^{1/2}/n$ $V-max-s = Q-max/(K1 \times Ds^2)$                                           | 0,05<br>0,0911<br>16,80<br>0,1307<br>0,45<br>0,18<br>0,00<br>0,03<br>0,1941<br>1,58 | del vertedero lateral Determinación del coeficiente K1 para determinación caudal Caudal a trasnportar despues del vertedero lateral Valor a verificar en la tabla de la figura 5.16 pag 199 Metcalf y Eddy Relación par determinación de calado de agua en la tubería  Relación calado a diámetro ó ancho calado de agua en la tubería circular ó rectangular con caudal mínimo Desnivel a que se debe colocar la t.sanitaria respescto a la t.principal Caudal máximo a llevar en la tubería sanitaria Velocidad con caudal máximo  Calado de agua a caudal máximo  Calado de agua a la salida del vertedero lateral.                                                  | m³/s  m m/s  m/s      |
| 23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31                   | colector  Relación longitud ancho del canal Relación calado a energía específica Diámetro de la tubería para Q sanitario Caudal Sanitario máximo Pendiente de la tubería o canal Rugosidad de la tubería o canal  K para relación (d/D) <sub>max</sub> = 94%  K1 para determinar área para máximo caudal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | L/B<br>w<br>Ds<br>QS<br>i<br>n | 14,33<br>0,2227<br>0,400<br>0,076<br>0,0036<br>0,009 | m³/s         | $K = f(d2/B)$ $Q = K \times (D^{8/3} \times i^{1/2})/n$ $n2 = f(L/B; w)$ $K = QS \times n/(Ds^{8/3} \times i^{1/2})$ $Y/B = f(K)$ $Y_2 = (Y/B) \times B$ $\Delta = Y2 - Y$ $Q-max = Kmax \times Ds^{8/3} \times i^{1/2}/n$ $V-max-s = Q-max/(K1 \times Ds^2)$ $Ymax = 0.94 \times Ds$ $h2 = Ymax - Y_2$ | 0,05 0,0911 16,80 0,1307 0,45 0,18 0,00 0,03 0,1941 1,58                            | del vertedero lateral Determinación del coeficiente K1 para determinación caudal Caudal a trasnportar despues del vertedero lateral Valor a verificar en la tabla de la figura 5.16 pag 199 Metcalf y Eddy Relación par determinación de calado de agua en la tubería  Relación calado a diámetro ó ancho calado de agua en la tubería circular ó rectangular con caudal mínimo Desnivel a que se debe colocar la t.sanitaria respescto a la t.principal Caudal máximo a llevar en la tubería  Velocidad con caudal máximo  Calado de agua a caudal máximo  Calado de agua a la salida del vertedero lateral. Calado de agua al ingreso del                             | m³/s  m m/s  m/s  m/s |
| 23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34 | colector  Relación longitud ancho del canal Relación calado a energía específica Diámetro de la tubería para Q sanitario Caudal Sanitario máximo Pendiente de la tubería o canal Rugosidad de la tubería o canal  Kuposidad de la tubería o canal  K para relación (d/D) <sub>max</sub> = 94%  K1 para determinar área para máximo caudal  Cálculo con la ecuación de Babbit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | L/B W Ds QS i n                | 14,33<br>0,2227<br>0,400<br>0,076<br>0,0036<br>0,009 | m³/s<br>m/m  | $K = f(d2/B)$ $Q = K \times (D^{8/3} \times i^{1/2})/n$ $n2 = f(L/B; w)$ $K = QS \times n/(DS^{8/3} \times i^{1/2})$ $Y/B = f(K)$ $Y_2 = (Y/B) \times B$ $\Delta = Y2 - Y$ $Q-max = Kmax \times DS^{8/3} \times i^{1/2}/n$ $V-max-s = Q-max/(K1 \times Ds^2)$ $Ymax = 0.94 \times DS$                   | 0,05<br>0,0911<br>16,80<br>0,1307<br>0,45<br>0,18<br>0,00<br>0,03<br>0,1941<br>1,58 | del vertedero lateral Determinación del coeficiente K1 para determinación caudal Caudal a trasnportar despues del vertedero lateral Valor a verificar en la tabla de la figura 5.16 pag 199 Metcalf y Eddy Relación par determinación de calado de agua en la tubería  Relación calado a diámetro ó ancho calado de agua en la tubería circular ó rectangular con caudal mínimo Desnivel a que se debe colocar la t.sanitaria respescto a la t.principal Caudal máximo a llevar en la tubería sanitaria Velocidad con caudal máximo  Calado de agua a caudal máximo  Calado de agua a la salida del vertedero lateral. Calado de agua a lingreso del vertedero lateral. | m³/s  m m/s  m³/s     |
| 23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32             | colector  Relación longitud ancho del canal Relación calado a energía específica Diámetro de la tubería para Q sanitario Caudal Sanitario máximo Pendiente de la tubería o canal Rugosidad de la tubería o canal  K para relación (d/D) <sub>max</sub> = 94%  K1 para determinar área para máximo caudal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | L/B<br>w<br>Ds<br>QS<br>i<br>n | 14,33<br>0,2227<br>0,400<br>0,076<br>0,0036<br>0,009 | m³/s         | $K = f(d2/B)$ $Q = K \times (D^{8/3} \times i^{1/2})/n$ $n2 = f(L/B; w)$ $K = QS \times n/(Ds^{8/3} \times i^{1/2})$ $Y/B = f(K)$ $Y_2 = (Y/B) \times B$ $\Delta = Y2 - Y$ $Q-max = Kmax \times Ds^{8/3} \times i^{1/2}/n$ $V-max-s = Q-max/(K1 \times Ds^2)$ $Ymax = 0.94 \times Ds$ $h2 = Ymax - Y_2$ | 0,05 0,0911 16,80 0,1307 0,45 0,18 0,00 0,03 0,1941 1,58                            | del vertedero lateral Determinación del coeficiente K1 para determinación caudal Caudal a trasnportar despues del vertedero lateral Valor a verificar en la tabla de la figura 5.16 pag 199 Metcalf y Eddy Relación par determinación de calado de agua en la tubería  Relación calado a diámetro ó ancho calado de agua en la tubería circular ó rectangular con caudal mínimo Desnivel a que se debe colocar la t.sanitaria respescto a la t.principal Caudal máximo a llevar en la tubería  Velocidad con caudal máximo  Calado de agua a caudal máximo  Calado de agua a la salida del vertedero lateral. Calado de agua al ingreso del                             | m³/s  m m/s  m/s  m/s |

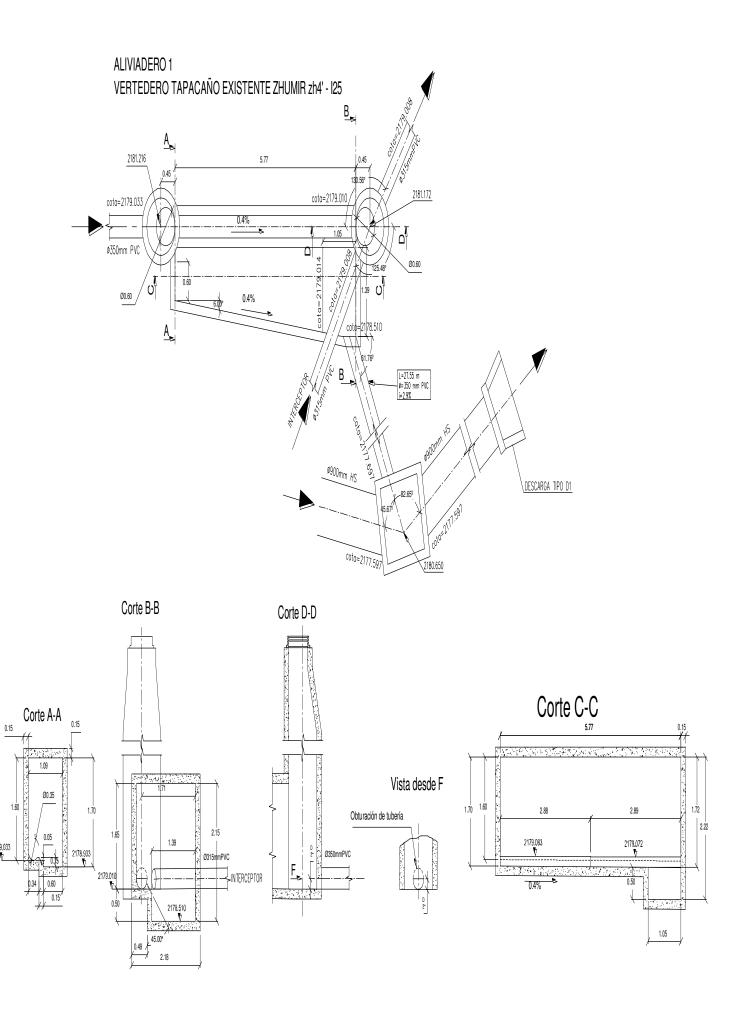
|          |                                                                                  |                       |                  |                                                  | RECTANGULARES DOS TUBERIAS DE LI                                                                   |                    |                                                                                                             |                   |
|----------|----------------------------------------------------------------------------------|-----------------------|------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------|-------------------|
| PASO     |                                                                                  | SIMBOLO               | VALOR            | UNIDAD                                           | CRITERIO                                                                                           | CALCULO            | RESULTADO                                                                                                   | UNIDAD            |
| 36       | sionamiento de la transición para giros de<br>Diámetro o base tubería ingreso    | B o D                 | 0,6              | m                                                | I                                                                                                  |                    | Longitud de la transición                                                                                   | 1                 |
|          | Diámetro o base tubería salida                                                   | Ds                    | 0,4              | m                                                | I = (B-Ds)/(tagθ)                                                                                  | 1,9                |                                                                                                             | m                 |
|          | Angulo de transición                                                             | θ                     | 6                | grados                                           |                                                                                                    |                    |                                                                                                             |                   |
| 37       | Relación diámetro tubería versus radio de<br>curvatura recomendado               | r/Ds                  | 2                |                                                  | r = 2 x Ds                                                                                         | 0,8                | Radio de curvatura en la tubería                                                                            |                   |
| 38       | Angulo entre el colector principal                                               | ,,,,,,                |                  |                                                  | 1 2 8 3 6                                                                                          | 0,0                | Longitud de la curva                                                                                        |                   |
|          | y la tubería sanitaria                                                           | ω                     | 0                | grados                                           | Ic = ω x (r + Ds/2)/180                                                                            | 0                  | 5/ 11/ 1                                                                                                    | m                 |
| 39       | Coeficiente de pérdida por cambio de<br>dirección según el ángulo de giro        | р                     | 0                |                                                  | $hf = p \times V-max-s^2/(2 \times g)$                                                             | 0,000              | Pérdida de carga porcambio de<br>dirección en el interior del colector                                      | m                 |
| 40       | direction segun er angalo de giro                                                | P                     |                  |                                                  | III = p x v-IIIax-5 /(2 x g)                                                                       | 0,000              | Pendiente en el canal de transición                                                                         |                   |
|          |                                                                                  |                       |                  |                                                  | $i = (hf + \Delta)/(I + Ic)$                                                                       | 1,58%              | por cambio de dirección y desnivel                                                                          | %                 |
| 1        | VERTEDERO GONZALO COBOS IV Diámetro o ancho de la tubería UNO                    | 13 - I13; AL<br>D 6 B | V 6<br>0,800     | m                                                | T                                                                                                  | 1                  | Г                                                                                                           | 1                 |
| l '      | Altura del canal recatangular                                                    | H                     | 0,000            | m                                                |                                                                                                    |                    |                                                                                                             |                   |
|          | Pendiente de la tubería o canal UNO                                              | i                     | 0,0040           | m/m                                              | Q-max1 = Kmax x D <sup>8/3</sup> x i <sup>1/2</sup> / n                                            | 1,30               | Caudal máximo para canal                                                                                    |                   |
|          | Rugosidad de la tubería o canal UNO                                              | n                     | 0,009            |                                                  |                                                                                                    |                    | circular                                                                                                    | m <sup>3</sup> /s |
| 2        | K para relación (d/D) <sub>max</sub> = 94% Diámetro o ancho de la tubería DOS    | Kmax<br>D ó B         | 0,3353<br>0,700  | m                                                |                                                                                                    |                    |                                                                                                             |                   |
| _        | Altura del canal recatangular                                                    | Н                     | 0,000            | m                                                |                                                                                                    |                    |                                                                                                             |                   |
|          | Pendiente de la tubería o canal DOS                                              | i                     | 0,004            | m/m                                              | Q-max2 = Kmax x D <sup>8/3</sup> x i <sup>1/2</sup> / n                                            | 0,85               | Caudal máximo para canal                                                                                    |                   |
|          | Rugosidad de la tubería o canal DOS                                              | n                     | 0,009            |                                                  |                                                                                                    |                    | circular                                                                                                    | m³/s              |
| 3        | K para relación (d/D) <sub>max</sub> = 94%  Caudal pluvial a transportar las dos | Kmax                  | 0,3353           |                                                  |                                                                                                    | 1                  | Caudal máximo a transportar                                                                                 |                   |
|          | tuberías para un período de 5 años                                               | Qmax-d                | 1.783,88         | It/s                                             | Qmax = Qmax1 + Qmax2                                                                               | 2,15               | las dos tuberías                                                                                            | m³/s              |
| 4        | Diámetro o ancho de la tubería                                                   | DóB                   | 0,900            | m                                                |                                                                                                    |                    |                                                                                                             |                   |
|          | Pendiente de la tubería o canal<br>Rugosidad de la tubería o canal               | i<br>n                | 0,0042<br>0,009  | m/m                                              | Q-max = Kmax x D <sup>8/3</sup> x i <sup>1/2</sup> / n                                             | 1,82               | Caudal máximo para canal<br>circular                                                                        | m <sup>3</sup> /s |
|          | K para relación (d/D) <sub>max</sub> = 94%                                       | Kmax                  | 0,009            | <del>†</del>                                     | 1                                                                                                  |                    | Girculai                                                                                                    | III /S            |
| 5        | K1 para calcular área para Qmax                                                  | K1                    | 0,7662           |                                                  |                                                                                                    | 0,62               | Area de sección transversal                                                                                 |                   |
|          |                                                                                  |                       |                  | 1                                                | Am = K1 x D <sup>2</sup>                                                                           |                    | para caudal máximo tub. Circular                                                                            | m <sup>2</sup>    |
|          |                                                                                  |                       |                  |                                                  | Vmax = Qmax/A                                                                                      | 2,94               | Velocidad transversal<br>con caudal máximo                                                                  | m/s               |
| 6        | Altura del canal                                                                 | Н                     | 0,000            | m                                                | FINA - SQUARE                                                                                      | 2,07               | Determinación de Kmax para                                                                                  | 111/3             |
|          | Relación H/B                                                                     | H/B                   | 0,000            |                                                  | Kmax = f(H/B)                                                                                      | canal circular     | canales rectangulares                                                                                       |                   |
| 7        |                                                                                  |                       |                  |                                                  | Q-max = Kmax x B <sup>8/3</sup> x i <sup>1/2</sup> / n                                             | canal circular     | Caudal máximo a transportar<br>para tubería rectangular                                                     | m³/s              |
| 8        |                                                                                  |                       |                  | 1                                                | Q-max = Kmax x B · · x I / n                                                                       | Carial Circulal    | Velocidad transversal                                                                                       | m /s              |
|          |                                                                                  |                       |                  |                                                  | Vmax = Q-max/(B x H)                                                                               | canal circular     | con caudal máximo                                                                                           | m/s               |
| 9        | Caudal Sanitario Medio                                                           | Qs                    | 28,410           | It/s                                             |                                                                                                    |                    | Caudal máximo a transportar en                                                                              | 2.                |
| 10       | Relación de dilución entre 2,5 y 5                                               | R                     | 3,000            |                                                  | QS = R x Qs/1000                                                                                   | 0,085              | tubería sanitaria<br>Relación par determinación de                                                          | m <sup>3</sup> /s |
|          |                                                                                  |                       |                  |                                                  | $K = QS \times n/(D^{8/3} \times i^{1/2})$                                                         | 0,0157             | calado de agua en la tubería                                                                                |                   |
| 11       |                                                                                  |                       |                  |                                                  |                                                                                                    |                    | Relación calado a diámetro ó                                                                                |                   |
| 12       |                                                                                  |                       |                  | -                                                | Y/B = f(K)                                                                                         | 0,15               | ancho<br>calado de agua en la tubería circular                                                              |                   |
| 12       |                                                                                  |                       |                  |                                                  | Y = (Y/B) x B                                                                                      | 0,14               | ó rectangular con caudal mínimo                                                                             | m                 |
| 13       | Determinación del coeficiente K1                                                 |                       |                  |                                                  |                                                                                                    | ĺ                  | Area de sección transversal                                                                                 |                   |
|          |                                                                                  | K1 = f(Y/B)           | 0,07             |                                                  | A = K1 x D <sup>2</sup>                                                                            | 0,0598             | en tubería circual                                                                                          | m <sup>2</sup>    |
| 14       |                                                                                  |                       |                  |                                                  | V = Q/A                                                                                            | 1,43               | Velocidad transversal en la<br>tubería circual con caudal mínimo                                            |                   |
| 15       |                                                                                  |                       |                  |                                                  | , w.                                                                                               | 1,10               | Velocidad transversal en la tubería                                                                         |                   |
|          |                                                                                  |                       |                  | 1664,08                                          | V = Q/(B x Y)                                                                                      | canal circular     | rectangular con caudal mínimo                                                                               | m                 |
| 16       | Cálculo con la ecuación de Ackers  Velocidad con caudal máximo                   | Vn                    | 2,937            | 91,39<br>m/s                                     | I                                                                                                  |                    | Cálculo de la energía específica                                                                            | 1                 |
|          | Coeficiente corrección energía cinetica                                          | α <sub>1</sub>        | 1,200            |                                                  | Ew = $\alpha \times Vn^{2}/2g + (dn - Y)$                                                          |                    | odiodio do la oriorgia oppositioa                                                                           |                   |
|          | Aceleración de la gravedad                                                       | g                     | 9,810            | m/s                                              |                                                                                                    | 1,24               |                                                                                                             | m                 |
| 17       | Altura del canal para Qmáximo                                                    | dn                    | 0,850            | m                                                |                                                                                                    |                    | Relación calado a energía                                                                                   |                   |
| 17       |                                                                                  |                       |                  |                                                  | (w=Y/Fw) < 0.6                                                                                     | 0,11               | específica                                                                                                  |                   |
| 18       | Relación entre h1 y h2 (calado de ingreso                                        | n <sub>2</sub>        | 18,300           |                                                  | (w=Y/Ew) < 0.6<br>$L_2 = 2.03 \times B \times (2.828 \times \sqrt{(n_2 - 0.4)(1 - 0.4 w)} +$       | 0,11               | Longitud requerida para el                                                                                  |                   |
|          | y calado de salida)                                                              |                       |                  |                                                  | $+ 0.31 \text{ w} - 0.984 \text{ ar cos } \sqrt{(0.4/\pi, )} + 0.065$                              | 14,50              | vertedero                                                                                                   | m                 |
| 19       | Coeficiente de corrección energía cinética                                       | α2                    | 1,400            | 1                                                | VO = (/0=/= ) (Fig. = / = Fig/O = = 100.5                                                          | 4.40               | Determinación de la velocidad                                                                               | pp /p             |
| 20       | Coeficiente de corrección energía presiones                                      | α <sub>2</sub> `      | 0,950            | 1                                                | V2 = $((2g/\alpha_2) (Ew - \alpha_2' \times Ew/(2 \times n_2)))^{0.5}$                             | 4,12               | en el extremo inferior del vertedro  Altura del calado de agua en el                                        | m/s               |
|          |                                                                                  | <u></u>               | <u> </u>         | <u></u>                                          | h1 = 0,5 x Ew                                                                                      | 0,62               | vertedero al ingreso                                                                                        | m                 |
| 21       |                                                                                  |                       | 80,790           |                                                  |                                                                                                    |                    | Altura del calado de agua en el                                                                             |                   |
| 22       |                                                                                  |                       |                  | <del>                                     </del> | h2 = h1/n <sub>2</sub>                                                                             | 0,03               | vertedero a la salida<br>Calado de agua a la salida                                                         | m                 |
|          |                                                                                  |                       |                  |                                                  | d2 = Y + h2                                                                                        | 0,17               | del vertedero lateral                                                                                       | m                 |
| 23       | Relación calado a diámetro o ancho del                                           |                       |                  |                                                  |                                                                                                    |                    | Determinación del coeficiente                                                                               |                   |
| - 24     | colector                                                                         | d2/B                  | 0,188            | <u> </u>                                         | K = f(d2/B)                                                                                        | 0,02               | K1 para determinación caudal                                                                                |                   |
| 24       |                                                                                  |                       |                  |                                                  | Q = K x (D <sup>8/3</sup> x i <sup>1/2</sup> )/n                                                   | 0,1198             | Caudal a trasnportar despues del<br>vertedero lateral                                                       | m <sup>3</sup> /s |
| 25       | Relación longitud ancho del canal                                                | L/B                   | 16,11            |                                                  |                                                                                                    |                    | Valor a verificar en la tabla de la                                                                         | ,5                |
| -00      | Relación calado a energía específica                                             | W                     | 0,1086           |                                                  | n2 = f(L/B;w)                                                                                      | 15,70              | figura 5.16 pag 199 Metcalf y Eddy                                                                          |                   |
| 26       | Diámetro de la tubería para Q sanitario  Caudal Sanitario máximo                 | Ds<br>QS              | 0,400<br>0,085   | m<br>m³/s                                        | K = QS x n/(Ds <sup>8/3</sup> x i <sup>1/2</sup> )                                                 | 0,1472             | Relación par determinación de<br>calado de agua en la tubería                                               |                   |
| 1        | Pendiente de la tubería o canal                                                  | i                     | 0,0036           | m/m                                              | 11 - 40 x 11 (D3 X 1 )                                                                             |                    | II again on in the colle                                                                                    |                   |
| L        | Rugosidad de la tubería o canal                                                  | n                     | 0,009            |                                                  |                                                                                                    |                    | 5                                                                                                           |                   |
| 27       |                                                                                  |                       |                  |                                                  | Y/B = f(K)                                                                                         | 0,48               | Relación calado a diámetro ó<br>ancho                                                                       | m                 |
| 28       |                                                                                  |                       |                  | 1                                                | IND - I(IV)                                                                                        | 0,70               | calado de agua en la tubería circular                                                                       |                   |
| 1        | İ                                                                                |                       |                  |                                                  | Y <sub>2</sub> = (Y/B) x B                                                                         | 0,19               | ó rectangular con caudal mínimo                                                                             | m/s               |
|          |                                                                                  |                       |                  | 1                                                |                                                                                                    | 0,00               | Desnivel a que se debe colocar la                                                                           | 1                 |
| 29       |                                                                                  |                       |                  |                                                  |                                                                                                    |                    | A continue of the state of                                                                                  |                   |
|          | K para relación (d/D) = 94%                                                      | Kmay                  | 0.3353           |                                                  | Δ = Y2 - Y                                                                                         | 0,06               | t.sanitaria respecto a la t.principal                                                                       |                   |
| 29       | K para relación (d/D) <sub>max</sub> = 94%                                       | Kmax                  | 0,3353           |                                                  |                                                                                                    | 0,06<br>0,1941     | t.sanitaria respecto a la t.principal<br>Caudal máximo a llevar en la tubería<br>sanitaria                  |                   |
|          | K1 para determinar área para máximo                                              | Kmax<br>K1            | 0,3353<br>0,7662 |                                                  | Q-max = Kmax x Ds <sup>8/3</sup> x i <sup>1/2</sup> / n                                            | 0,1941             | Caudal máximo a llevar en la tubería                                                                        | m <sup>3</sup> /s |
| 30       | K1 para determinar área para máximo caudal                                       |                       |                  |                                                  |                                                                                                    |                    | Caudal máximo a llevar en la tubería<br>sanitaria                                                           |                   |
| 30       | K1 para determinar área para máximo                                              |                       |                  |                                                  | Q-max = Kmax x Ds <sup>8/3</sup> x i <sup>1/2</sup> / n                                            | 0,1941             | Caudal máximo a llevar en la tubería<br>sanitaria<br>Velocidad con caudal máximo                            | m <sup>3</sup> /s |
| 30 31 32 | K1 para determinar área para máximo caudal                                       |                       |                  |                                                  | Q-max = Kmax x Ds <sup>8/3</sup> x i <sup>1/2</sup> / n                                            | 0,1941             | Caudal máximo a llevar en la tubería sanitaria  Velocidad con caudal máximo  Calado de agua a caudal máximo | m <sup>3</sup> /s |
| 30       | K1 para determinar área para máximo caudal                                       |                       |                  |                                                  | Q-max = Kmax x Ds <sup>8/3</sup> x i <sup>1/2</sup> / n<br>V-max-s = Q-max/(K1 x Ds <sup>2</sup> ) | <b>0,1941</b> 1,58 | Caudal máximo a llevar en la tubería<br>sanitaria<br>Velocidad con caudal máximo                            | m³/s<br>m/s       |

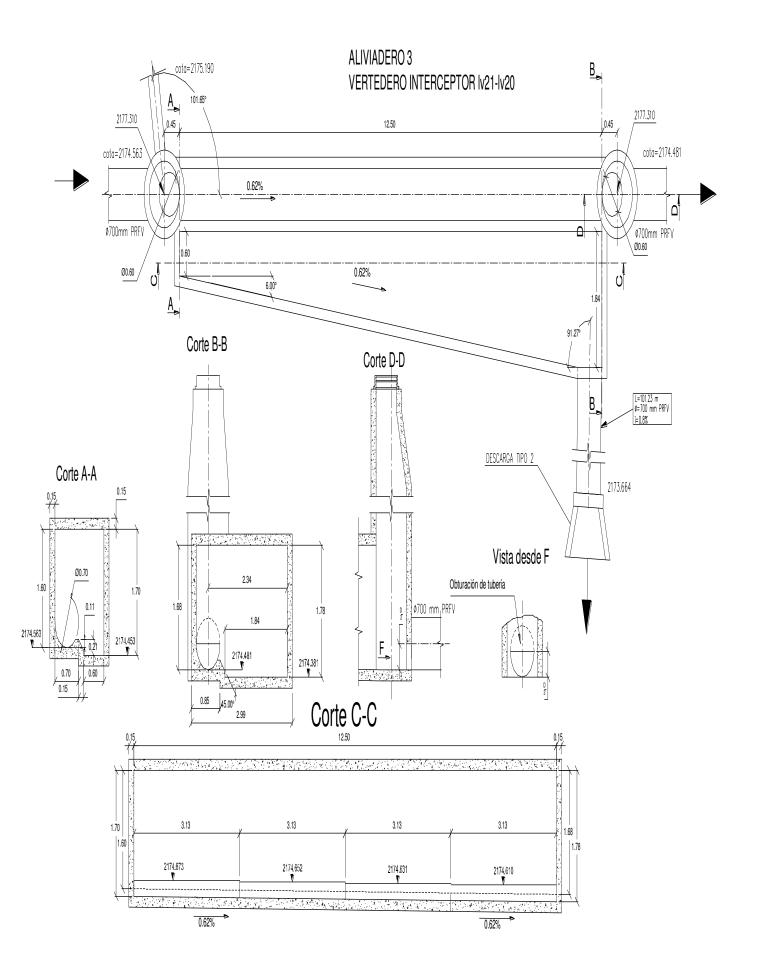
|                |                                                                               | PARA CANAL      | LES CIRCUL                                       | ARES O R                                         | ECTANGULARES DOS TUBERIAS DE LL                                                             | EGADA                |                                                                                                                                                                                                              |                   |
|----------------|-------------------------------------------------------------------------------|-----------------|--------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| PASO           | DATOS                                                                         | SIMBOLO         | VALOR                                            | UNIDAD                                           | CRITERIO                                                                                    | CALCULO              | RESULTADO                                                                                                                                                                                                    | UNIDAD            |
| 34             |                                                                               |                 |                                                  |                                                  |                                                                                             |                      | Calado de agua al ingreso del                                                                                                                                                                                |                   |
| 35             | Velocidad de aproximación con                                                 | Vmax            | 2,94                                             | m/s                                              | h1 = H - Y <b>ó</b> h1 = 0,94 x D - Y                                                       | 0,711                | vertedero lateral.  Determinación de la longitud                                                                                                                                                             | m                 |
| 33             | caudal máximo                                                                 | VIIIdX          | 2,94                                             | 111/5                                            | L = 7,55 x Vmax x d x log(h1/h2)                                                            | 11,73                | del vertedero lateral                                                                                                                                                                                        | m                 |
| nsionar        | niento de la transición para giros de la tub                                  | ería sanitaria  |                                                  | 1                                                |                                                                                             |                      |                                                                                                                                                                                                              |                   |
| 36             | Diámetro o base tubería ingreso                                               | BoD             | 0,9                                              | m                                                |                                                                                             |                      | Longitud de la transición                                                                                                                                                                                    |                   |
|                | Diámetro o base tubería salida  Angulo de transición                          | Ds<br>θ         | 0,4<br>6                                         | m<br>grados                                      | I = (B-Ds)/(tagθ)                                                                           | 4,8                  |                                                                                                                                                                                                              | m                 |
| 37             | Relación diámetro tubería versus radio de                                     | Ů               |                                                  | grados                                           |                                                                                             |                      | Radio de curvatura en la tubería                                                                                                                                                                             |                   |
|                | curvatura recomendado                                                         | r/Ds            | 2                                                |                                                  | r = 2 x Ds                                                                                  | 0,8                  |                                                                                                                                                                                                              |                   |
| 38             | Angulo entre el colector principal                                            |                 |                                                  |                                                  |                                                                                             | _                    | Longitud de la curva                                                                                                                                                                                         |                   |
| 39             | y la tubería sanitaria  Coeficiente de pérdida por cambio de                  | ω               | 0                                                | grados                                           | Ic = ω x (r + Ds/2)/180                                                                     | 0                    | Pérdida de carga porcambio de                                                                                                                                                                                | m                 |
| 00             | dirección según el ángulo de giro                                             | р               | 0                                                |                                                  | $hf = p \times V-max-s^2/(2 \times q)$                                                      | 0,000                | dirección en el interior del colector                                                                                                                                                                        | m                 |
| 40             |                                                                               |                 |                                                  |                                                  |                                                                                             |                      | Pendiente en el canal de transición                                                                                                                                                                          |                   |
|                | VEDTEDEDO AL ELANDRO ORDON                                                    | F7 1:44 144:    | 4/1/7                                            |                                                  | $i = (hf + \Delta)/(I + Ic)$                                                                | 1,19%                | por cambio de dirección y desnivel                                                                                                                                                                           | %                 |
| 1              | VERTEDERO ALEJANDRO ORDON<br>Diámetro o ancho de la tubería UNO               | DóB             | 0,800                                            | m                                                |                                                                                             | ı                    | T                                                                                                                                                                                                            |                   |
|                | Altura del canal recatangular                                                 | H               | 0,000                                            | m                                                |                                                                                             |                      |                                                                                                                                                                                                              |                   |
|                | Pendiente de la tubería o canal UNO                                           | i               | 0,0040                                           | m/m                                              | Q-max1 = Kmax x D <sup>8/3</sup> x i <sup>1/2</sup> / n                                     | 1,30                 | Caudal máximo para canal                                                                                                                                                                                     |                   |
|                | Rugosidad de la tubería o canal UNO                                           | n               | 0,009                                            |                                                  |                                                                                             |                      | circular                                                                                                                                                                                                     | m <sup>3</sup> /s |
| •              | K para relación (d/D) <sub>max</sub> = 94%                                    | Kmax            | 0,3353                                           |                                                  |                                                                                             |                      |                                                                                                                                                                                                              |                   |
| 2              | Diámetro o ancho de la tubería DOS  Altura del canal recatangular             | D ó B<br>H      | 0,500<br>0,000                                   | m<br>m                                           |                                                                                             |                      |                                                                                                                                                                                                              |                   |
|                | Pendiente de la tubería o canal DOS                                           | i               | 0,004                                            | m/m                                              | Q-max2 = Kmax x D <sup>8/3</sup> x i <sup>1/2</sup> / n                                     | 0,35                 | Caudal máximo para canal                                                                                                                                                                                     |                   |
|                | Rugosidad de la tubería o canal DOS                                           | n               | 0,009                                            |                                                  |                                                                                             | .,                   | circular                                                                                                                                                                                                     | m <sup>3</sup> /s |
|                | K para relación (d/D) <sub>max</sub> = 94%                                    | Kmax            | 0,3353                                           |                                                  |                                                                                             |                      |                                                                                                                                                                                                              |                   |
| 3              | Caudal pluvial a transportar las dos                                          | 0               | 4.000.57                                         | 167-                                             | 0                                                                                           | 1.05                 | Caudal máximo a transportar                                                                                                                                                                                  | ۹.                |
| 4              | tuberías para un período de 5 años  Diámetro o ancho de la tubería            | Qmax-d<br>D ó B | 1.082,57<br>0,800                                | lt/s<br>m                                        | Qmax = Qmax1 + Qmax2                                                                        | 1,65                 | las dos tuberías                                                                                                                                                                                             | m <sup>3</sup> /s |
| 4              | Pendiente de la tubería o canal                                               | i               | 0,800                                            | m/m                                              | Q-max = Kmax x D <sup>8/3</sup> x i <sup>1/2</sup> / n                                      | 1,22                 | Caudal máximo para canal                                                                                                                                                                                     |                   |
|                | Rugosidad de la tubería o canal                                               | n               | 0,003                                            | 1                                                | S HON - MINON A D AT / II                                                                   | .,                   | circular                                                                                                                                                                                                     | m <sup>3</sup> /s |
|                | K para relación (d/D) <sub>max</sub> = 94%                                    | Kmax            | 0,3353                                           |                                                  |                                                                                             |                      |                                                                                                                                                                                                              |                   |
| 5              | K1 para calcular área para Qmax                                               | K1              | 0,7662                                           |                                                  |                                                                                             | 0,49                 | Area de sección transversal                                                                                                                                                                                  |                   |
|                |                                                                               |                 |                                                  |                                                  | Am = K1 x D <sup>2</sup>                                                                    |                      | para caudal máximo tub. Circular                                                                                                                                                                             | m <sup>2</sup>    |
|                |                                                                               |                 |                                                  |                                                  | Vmax = Qmax/A                                                                               | 2,48                 | Velocidad transversal<br>con caudal máximo                                                                                                                                                                   | m/s               |
| 6              | Altura del canal                                                              | Н               | 0,000                                            | m                                                | VIIIax - QIIIax/A                                                                           | 2,40                 | Detaerminación de Kmax para                                                                                                                                                                                  | 111/5             |
| ŭ              | Relación H/B                                                                  | H/B             | 0,000                                            |                                                  | Kmax = f(H/B)                                                                               | canal circular       | canales rectangulares                                                                                                                                                                                        |                   |
| 7              |                                                                               |                 |                                                  |                                                  |                                                                                             |                      | Caudal máximo a transportar                                                                                                                                                                                  |                   |
|                |                                                                               |                 |                                                  |                                                  | Q-max = Kmax x B <sup>8/3</sup> x i <sup>1/2</sup> / n                                      | canal circular       | para tubería rectangular                                                                                                                                                                                     | m <sup>3</sup> /s |
| 8              |                                                                               |                 |                                                  |                                                  | Versus - O man//P v. IIV                                                                    | aanal aisaulas       | Velocidad transversal                                                                                                                                                                                        | /                 |
| 9              | Caudal Sanitario Medio                                                        | Qs              | 36,840                                           | It/s                                             | Vmax = Q-max/(B x H)                                                                        | canal circular       | con caudal máximo  Caudal máximo a transportar en                                                                                                                                                            | m/s               |
| 5              | Relación de dilución entre 2,5 y 5                                            | R               | 3,000                                            | 103                                              | QS = R x Qs/1000                                                                            | 0,111                | tubería sanitaria                                                                                                                                                                                            | m <sup>3</sup> /s |
| 10             |                                                                               |                 |                                                  |                                                  |                                                                                             |                      | Relación par determinación de                                                                                                                                                                                |                   |
|                |                                                                               |                 |                                                  |                                                  | $K = QS \times n/(D^{8/3} \times i^{1/2})$                                                  | 0,0305               | calado de agua en la tubería                                                                                                                                                                                 |                   |
| 11             |                                                                               |                 |                                                  |                                                  | V/D ///O                                                                                    | 0.04                 | Relación calado a diámetro ó                                                                                                                                                                                 |                   |
| 12             |                                                                               |                 |                                                  |                                                  | Y/B = f(K)                                                                                  | 0,21                 | ancho<br>calado de agua en la tubería circular                                                                                                                                                               |                   |
|                |                                                                               |                 |                                                  |                                                  | Y = (Y/B) x B                                                                               | 0,17                 | ó rectangular con caudal mínimo                                                                                                                                                                              | m                 |
| 13             | Determinación del coeficiente K1                                              |                 |                                                  |                                                  |                                                                                             |                      | Area de sección transversal                                                                                                                                                                                  |                   |
|                |                                                                               | K1 = f(Y/B)     | 0,12                                             |                                                  | A = K1 x D <sup>2</sup>                                                                     | 0,0767               | en tubería circual                                                                                                                                                                                           | m <sup>2</sup>    |
| 14             |                                                                               |                 |                                                  |                                                  | V 0/4                                                                                       |                      | Velocidad transversal en la                                                                                                                                                                                  |                   |
| 15             |                                                                               |                 |                                                  |                                                  | V = Q/A                                                                                     | 1,44                 | tubería circual con caudal mínimo Velocidad transversal en la tubería                                                                                                                                        |                   |
| 15             |                                                                               |                 |                                                  | 939,87                                           | V = Q/(B x Y)                                                                               | canal circular       | rectangular con caudal mínimo                                                                                                                                                                                | m                 |
|                | Cálculo con la ecuación de Ackers                                             |                 |                                                  | 105,86                                           |                                                                                             |                      |                                                                                                                                                                                                              |                   |
| 16             | Velocidad con caudal máximo                                                   | Vn              | 2,479                                            | m/s                                              | _                                                                                           |                      | Cálculo de la energía específica                                                                                                                                                                             |                   |
|                | Coeficiente corrección energía cinetica                                       | α <sub>1</sub>  | 1,200                                            |                                                  | Ew = $\alpha \times Vn^2/2g + (dn - Y)$                                                     |                      |                                                                                                                                                                                                              |                   |
|                | Aceleración de la gravedad  Altura del canal para Qmáximo                     | g<br>dn         | 9,810<br>0,750                                   | m/s<br>m                                         |                                                                                             | 0,96                 |                                                                                                                                                                                                              | m                 |
| 17             | Altara dei cariai para ginaxiiro                                              | un              | 0,700                                            |                                                  |                                                                                             |                      | Relación calado a energía                                                                                                                                                                                    |                   |
|                |                                                                               |                 |                                                  |                                                  | (w=Y/Ew) < 0,6                                                                              | 0,18                 | específica                                                                                                                                                                                                   |                   |
| 18             | Relación entre h1 y h2 (calado de ingreso                                     | n <sub>2</sub>  | 16,000                                           |                                                  | (w=Y/Ew) < 0.6<br>$L_2 = 2.03 \times B \times (2.828 \times \sqrt{(n_2 - 0.4)(1 - 0.4w)} +$ |                      | Longitud requerida para el                                                                                                                                                                                   |                   |
| 46             | y calado de salida)                                                           |                 | 4 :                                              | <b> </b>                                         | + 0.31 w - 0.984 ar cos $\sqrt{(0.4/n, )}$ + 0.065 )                                        | 11,30                | vertedero                                                                                                                                                                                                    | m                 |
| 19             | Coeficiente de corrección energía cinética                                    | α <sub>2</sub>  | 1,400                                            | <del>                                     </del> | V2 = (/2g/g ) (5 = / 5/2 0.5                                                                | 2 64                 | Determinación de la velocidad                                                                                                                                                                                | m/-               |
| 20             | Coeficiente de corrección energía presiones                                   | α2`             | 0,950                                            | 1                                                | $V2 = ((2g/\alpha_2) (Ew - \alpha_2' \times Ew/(2 \times n_2)))^{0.5}$                      | 3,61                 | en el extremo inferior del vertedro  Altura del calado de agua en el                                                                                                                                         | m/s               |
| 20             |                                                                               |                 |                                                  |                                                  | h1 = 0,5 x Ew                                                                               | 0,48                 | vertedero al ingreso                                                                                                                                                                                         | m                 |
| 21             |                                                                               |                 | İ                                                |                                                  |                                                                                             |                      | Altura del calado de agua en el                                                                                                                                                                              |                   |
|                |                                                                               |                 |                                                  | ļ                                                | h2 = h1/n <sub>2</sub>                                                                      | 0,03                 | vertedero a la salida                                                                                                                                                                                        | m                 |
| 22             |                                                                               |                 | [                                                |                                                  | 10 V 10                                                                                     | 0.00                 | Calado de agua a la salida                                                                                                                                                                                   |                   |
| 23             | Relación calado a diámetro o ancho del                                        |                 | <del>                                     </del> | 1                                                | d2 = Y + h2                                                                                 | 0,20                 | del vertedero lateral  Determinación del coeficiente                                                                                                                                                         | m                 |
| 23             | colector                                                                      | d2/B            | 0,247                                            |                                                  | K = f(d2/B)                                                                                 | 0,04                 | K1 para determinación caudal                                                                                                                                                                                 | Ī                 |
| 24             | 55.55.5.                                                                      | <u> </u>        | J,_ //                                           | <b>†</b>                                         | (020)                                                                                       | 0,01                 | Caudal a trasnportar despues del                                                                                                                                                                             |                   |
|                |                                                                               |                 |                                                  |                                                  | $Q = K \times (D^{8/3} \times i^{1/2})/n$                                                   | 0,1427               | vertedero lateral                                                                                                                                                                                            | m <sup>3</sup> /s |
| 25             | Relación longitud ancho del canal                                             | L/B             | 14,13                                            | <u> </u>                                         |                                                                                             |                      | Valor a verificar en la tabla de la                                                                                                                                                                          |                   |
| 26             | Relación calado a energía específica  Diámetro de la tubería para Q sanitario | w<br>Ds         | 0,1754<br>0,400                                  | m                                                | n2 = f(L/B;w)                                                                               | 16,00                | figura 5.16 pag 199 Metcalf y Eddy<br>Relación par determinación de                                                                                                                                          | <b>-</b>          |
| 20             | Caudal Sanitario máximo                                                       | QS              | 0,400                                            | m <sup>3</sup> /s                                | K = QS x n/(Ds <sup>8/3</sup> x i <sup>1/2</sup> )                                          | 0,1936               | calado de agua en la tubería                                                                                                                                                                                 |                   |
|                | Pendiente de la tubería o canal                                               | i               | 0,0035                                           | m/m                                              | 40 / 11/(23 / 1 /                                                                           | ,,                   |                                                                                                                                                                                                              |                   |
|                | i cilulcille de la lubella o callai                                           | n               | 0,009                                            |                                                  |                                                                                             |                      |                                                                                                                                                                                                              |                   |
|                | Rugosidad de la tubería ocanal                                                |                 | 1                                                |                                                  |                                                                                             |                      | Relación calado a diámetro ó                                                                                                                                                                                 |                   |
| 27             |                                                                               |                 |                                                  |                                                  | V/D = £/IZ)                                                                                 | 0,57                 | ancho                                                                                                                                                                                                        | m                 |
|                |                                                                               |                 |                                                  |                                                  | Y/B = f(K)                                                                                  | -,                   |                                                                                                                                                                                                              |                   |
| 27             |                                                                               |                 |                                                  |                                                  |                                                                                             |                      | calado de agua en la tubería circular                                                                                                                                                                        | m/e               |
| 28             |                                                                               |                 |                                                  |                                                  | $Y_2 = (Y/B) \times B$                                                                      | 0,23                 | calado de agua en la tubería circular<br>ó rectangular con caudal mínimo                                                                                                                                     | m/s               |
|                |                                                                               |                 |                                                  |                                                  |                                                                                             |                      | calado de agua en la tubería circular                                                                                                                                                                        | m/s               |
| 28             |                                                                               | Kmax            | 0,3353                                           |                                                  | Y <sub>2</sub> = (Y/B) x B<br>Δ = Y2 - Y                                                    | 0,23<br>0,02<br>0,06 | calado de agua en la tubería circular<br>ó rectangular con caudal mínimo<br>Desnivel a que se debe colocar la                                                                                                |                   |
| 28<br>29<br>30 | Rugosidad de la tubería ocanal  K para relación (d/D) <sub>max</sub> = 94%    |                 |                                                  |                                                  | Y <sub>2</sub> = (Y/B) x B                                                                  | 0,23<br>0,02         | calado de agua en la tubería circular<br>ó rectangular con caudal mínimo<br>Desnivel a que se debe colocar la<br>t.sanitaria respescto a la t.principal<br>Caudal máximo a llevar en la tubería<br>sanitaria |                   |
| 28             | Rugosidad de la tubería ocanal                                                | Kmax<br>K1      | 0,3353<br>0,7662                                 |                                                  | Y <sub>2</sub> = (Y/B) x B<br>Δ = Y2 - Y                                                    | 0,23<br>0,02<br>0,06 | calado de agua en la tubería circular<br>ó rectangular con caudal mínimo<br>Desnivel a que se debe colocar la<br>t.sanitaria respescto a la t.principal<br>Caudal máximo a llevar en la tubería              |                   |

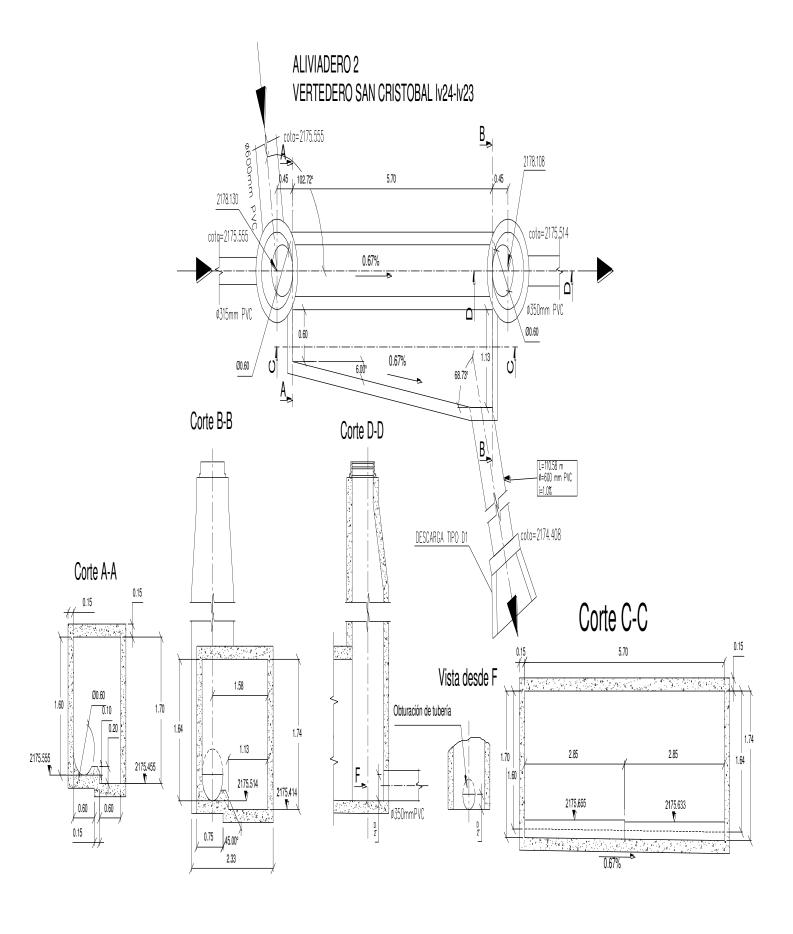
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PARA CANAL       | ES CIRCUL       | ARES O F                                         | RECTANGULARES DOS TUBERIAS DE LL                                                                                                          | EGADA                                            |                                                |                                                  |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------|--------------------------------------------------|
| PASO    | DATOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SIMBOLO          | VALOR           | UNIDAD                                           | CRITERIO                                                                                                                                  | CALCULO                                          | RESULTADO                                      | UNIDAD                                           |
| 32      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                |                 |                                                  |                                                                                                                                           |                                                  | Calado de agua a caudal máximo                 |                                                  |
| -       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                 |                                                  | Ymax = 0,94 x Ds                                                                                                                          | 0,376                                            |                                                | m                                                |
| 33      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                 |                                                  |                                                                                                                                           |                                                  | Calado de agua a la salida del                 |                                                  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                 |                                                  | h2 = Ymax - Y <sub>2</sub>                                                                                                                | 0,148                                            | vertedero lateral.                             | m                                                |
| 34      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                 |                                                  |                                                                                                                                           |                                                  | Calado de agua al ingreso del                  |                                                  |
| لـــا   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                 |                                                  | h1 = H - Y <b>ó</b> h1 = 0,94 x D - Y                                                                                                     | 0,584                                            | vertedero lateral.                             | m                                                |
| 35      | Velocidad de aproximación con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Vmax             | 2,48            | m/s                                              |                                                                                                                                           |                                                  | Determinación de la longitud                   |                                                  |
| D:      | caudal máximo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |                 |                                                  | L = 7,55 x Vmax x d x log(h1/h2)                                                                                                          | 8,93                                             | del vertedero lateral                          | m                                                |
| 36      | ionamiento de la transición para giros de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |                 |                                                  | T                                                                                                                                         | 1                                                | Landy of the later of the                      | 1                                                |
| 36      | Diámetro o base tubería ingreso  Diámetro o base tubería salida                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B o D<br>Ds      | 0,8<br>0,4      | m<br>m                                           | I = (B-Ds)/(tagθ)                                                                                                                         | 3,8                                              | Longitud de la transición                      | m                                                |
|         | Angulo de transición                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | θ                | 6               | grados                                           | 1 - (B-DS)/(lage)                                                                                                                         | 3,6                                              |                                                | ""                                               |
| 37      | Relación diámetro tubería versus radio de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                |                 | grados                                           |                                                                                                                                           |                                                  | Radio de curvatura en la tubería               | 1                                                |
|         | curvatura recomendado                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | r/Ds             | 2               |                                                  | r = 2 x Ds                                                                                                                                | 0,8                                              |                                                |                                                  |
| 38      | Angulo entre el colector principal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |                 |                                                  |                                                                                                                                           |                                                  | Longitud de la curva                           |                                                  |
|         | y la tubería sanitaria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ω                | 0               | grados                                           | $Ic = \omega x (r + Ds/2)/180$                                                                                                            | 0                                                | -                                              | m                                                |
| 39      | Coeficiente de pérdida por cambio de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                 |                                                  |                                                                                                                                           |                                                  | Pérdida de carga porcambio de                  |                                                  |
|         | dirección según el ángulo de giro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | р                | 0               |                                                  | hf = p x V-max-s <sup>2</sup> /(2 x g)                                                                                                    | 0,000                                            | dirección en el interior del colector          | m                                                |
| 40      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                 |                                                  |                                                                                                                                           |                                                  | Pendiente en el canal de transición            |                                                  |
|         | VEDTERED 1005 41 VEAR 10 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ~ 4/1/0          |                 |                                                  | $i = (hf + \Delta)/(I + Ic)$                                                                                                              | 1,58%                                            | por cambio de dirección y desnivel             | %                                                |
|         | VERTEDERO JOSE ALVEAR Iv9 - I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  | 0.000           |                                                  | I                                                                                                                                         | 1                                                | I                                              | ,                                                |
| 1       | Diámetro o ancho de la tubería UNO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DóB              | 0,800           | m                                                | 4                                                                                                                                         |                                                  |                                                |                                                  |
| ŀ       | Altura del canal recatangular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | H<br>i           | 0,000           | m<br>m/m                                         | O moud = Kmou v D8/3 v :1/2/ m                                                                                                            | 1,39                                             | Caudal máximo para capal                       |                                                  |
| -       | Pendiente de la tubería o canal UNO Rugosidad de la tubería o canal UNO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n                | 0,005           | 111/111                                          | Q-max1 = Kmax x D <sup>8/3</sup> x i <sup>1/2</sup> / n                                                                                   | 1,39                                             | Caudal máximo para canal<br>circular           | m <sup>3</sup> /s                                |
|         | K para relación (d/D) <sub>max</sub> = 94%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Kmax             | 0,009           | 1                                                | 1                                                                                                                                         |                                                  | Grouldi                                        | 111.78                                           |
| 2       | Diámetro o ancho de la tubería DOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D ó B            | 0,500           | m                                                | 1                                                                                                                                         |                                                  |                                                | <del>                                     </del> |
| ^       | Altura del canal recatangular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Н                | 0,000           | m                                                | 1                                                                                                                                         | 1                                                |                                                | 1                                                |
|         | Pendiente de la tubería o canal DOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | i                | 0,004           | m/m                                              | Q-max2 = Kmax x D <sup>8/3</sup> x i <sup>1/2</sup> / n                                                                                   | 0,35                                             | Caudal máximo para canal                       | 1                                                |
|         | Rugosidad de la tubería o canal DOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n                | 0,009           |                                                  | ]                                                                                                                                         |                                                  | circular                                       | m <sup>3</sup> /s                                |
| L I     | K para relación (d/D) <sub>max</sub> = 94%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Kmax             | 0,3353          |                                                  |                                                                                                                                           | <u> </u>                                         | <u> </u>                                       | <u> </u>                                         |
| 3       | Caudal pluvial a transportar las dos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                 |                                                  |                                                                                                                                           |                                                  | Caudal máximo a transportar                    |                                                  |
|         | tuberías para un período de 5 años                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Qmax-d           | 1.271,51        | It/s                                             | Qmax = Qmax1 + Qmax2                                                                                                                      | 1,74                                             | las dos tuberías                               | m <sup>3</sup> /s                                |
| 4       | Diámetro o ancho de la tubería                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DóB              | 0,800           | m                                                |                                                                                                                                           |                                                  |                                                |                                                  |
| ] [     | Pendiente de la tubería o canal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | i                | 0,0040          | m/m                                              | Q-max = Kmax x D <sup>8/3</sup> x i <sup>1/2</sup> / n                                                                                    | 1,30                                             | Caudal máximo para canal                       |                                                  |
|         | Rugosidad de la tubería o canal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n                | 0,009           |                                                  | 4                                                                                                                                         |                                                  | circular                                       | m <sup>3</sup> /s                                |
|         | K para relación (d/D) <sub>max</sub> = 94%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Kmax             | 0,3353          |                                                  |                                                                                                                                           | 2.12                                             |                                                | ļ                                                |
| 5       | K1 para calcular área para Qmax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | K1               | 0,7662          |                                                  |                                                                                                                                           | 0,49                                             | Area de sección transversal                    | 2                                                |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                 | -                                                | Am = K1 x D <sup>2</sup>                                                                                                                  |                                                  | para caudal máximo tub. Circular               | m <sup>2</sup>                                   |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                 |                                                  | Vmax = Qmax/A                                                                                                                             | 2,65                                             | Velocidad transversal<br>con caudal máximo     | m/s                                              |
| 6       | Altura del canal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Н                | 0,000           | m                                                | VIIIAX - QIIIAX/A                                                                                                                         | 2,03                                             | Determinación de Kmax para                     | 111/3                                            |
| ľ       | Relación H/B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | H/B              | 0,000           |                                                  | Kmax = f(H/B)                                                                                                                             | canal circular                                   | canales rectangulares                          |                                                  |
| 7       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                | .,              |                                                  |                                                                                                                                           |                                                  | Caudal máximo a transportar                    | 1                                                |
| L I     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                 |                                                  | Q-max = Kmax x B <sup>8/3</sup> x i <sup>1/2</sup> / n                                                                                    | canal circular                                   | para tubería rectangular                       | m <sup>3</sup> /s                                |
| 8       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                 |                                                  |                                                                                                                                           |                                                  | Velocidad transversal                          |                                                  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                 |                                                  | Vmax = Q-max/(B x H)                                                                                                                      | canal circular                                   | con caudal máximo                              | m/s                                              |
| 9       | Caudal Sanitario Medio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Qs               | 37,560          | It/s                                             |                                                                                                                                           |                                                  | Caudal máximo a transportar en                 |                                                  |
| لـــــا | Relación de dilución entre 2,5 y 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R                | 3,000           | ļ                                                | QS = R x Qs/1000                                                                                                                          | 0,113                                            | tubería sanitaria                              | m <sup>3</sup> /s                                |
| 10      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                 |                                                  | 000 400                                                                                                                                   |                                                  | Relación par determinación de                  |                                                  |
| 44      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                 | 1                                                | K = QS x n/(D <sup>8/3</sup> x i <sup>1/2</sup> )                                                                                         | 0,0291                                           | calado de agua en la tubería                   | ļ                                                |
| 11      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                 |                                                  | Y/B = f(K)                                                                                                                                | 0.20                                             | Relación calado a diámetro ó                   | 1                                                |
| 12      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                 | }                                                | 1/D = I(N)                                                                                                                                | 0,20                                             | ancho<br>calado de agua en la tubería circular |                                                  |
| 12      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                 |                                                  | Y = (Y/B) x B                                                                                                                             | 0,16                                             | ó rectangular con caudal mínimo                | m                                                |
| 13      | Determinación del coeficiente K1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                 |                                                  | 1 - (110) x 0                                                                                                                             | 0,10                                             | Area de sección transversal                    |                                                  |
|         | _ otomination doi docinorate ix i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | K1 = f(Y/B)      | 0,11            |                                                  | $A = K1 \times D^2$                                                                                                                       | 0,0716                                           | en tubería circual                             | m <sup>2</sup>                                   |
| 14      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .,,              | -,              |                                                  | A-NIAD                                                                                                                                    | .,                                               | Velocidad transversal en la                    | T                                                |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                 |                                                  | V = Q/A                                                                                                                                   | 1,57                                             | tubería circual con caudal mínimo              | 1                                                |
| 15      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                 |                                                  |                                                                                                                                           |                                                  | Velocidad transversal en la tubería            |                                                  |
| L_ I    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                 | 1091,31                                          | V = Q/(B x Y)                                                                                                                             | canal circular                                   | rectangular con caudal mínimo                  | m                                                |
|         | Cálculo con la ecuación de Ackers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ·                |                 | 142,64                                           |                                                                                                                                           |                                                  |                                                |                                                  |
| 16      | Velocidad con caudal máximo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Vn               | 2,650           | m/s                                              |                                                                                                                                           |                                                  | Cálculo de la energía específica               |                                                  |
|         | Coeficiente corrección energía cinetica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | α <sub>1</sub>   | 1,200           | ļ                                                | $Ew = \alpha \times Vn^2/2g + (dn - Y)$                                                                                                   | 1 .                                              |                                                | 1                                                |
|         | Aceleración de la gravedad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | g                | 9,810           | m/s                                              | -                                                                                                                                         | 1,02                                             |                                                | m                                                |
| 17      | Altura del canal para Qmáximo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | dn               | 0,750           | m                                                | -                                                                                                                                         | <del>                                     </del> | Pologión colodo a accesto                      | 1                                                |
| 17      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                 |                                                  | (w=Y/Ew) < 0,6                                                                                                                            | 0,16                                             | Relación calado a energía<br>específica        |                                                  |
| 18      | Relación entre h1 y h2 (calado de ingreso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n <sub>2</sub>   | 8,800           | 1                                                | (W=Y/EW) < 0.6<br>$L_{\gamma} = 2.03 \times B \times (2.828 \times \sqrt{(n_{\gamma} - 0.4)}(1 - 0.4w) +$                                 | υ, ιυ                                            | Especifica  Longitud requerida para el         | 1                                                |
| 10      | y calado de salida)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ''2              | 3,000           |                                                  | $L_2 = 2.03 \times B \times (2.828 \times \sqrt{(n_2 - 0.4)(1 - 0.4w)} + 0.31 \text{ w} - 0.984 \text{ ar cos } \sqrt{(0.4/n_1)} + 0.065$ | 7,10                                             | vertedero                                      | m                                                |
| 19      | y carado de salida)  Coeficiente de corrección energía cinética                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\alpha_2$       | 1,400           | <del>                                     </del> | T U . 31 W - U . 764 AF COS \(\sqrt{1} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                                                              | 7,10                                             | Determinación de la velocidad                  |                                                  |
|         | Coeficiente de corrección energía presiones                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | α <sub>2</sub> ` | 0,950           | <del>                                     </del> | $V2 = ((2g/\alpha_2) (Ew - \alpha_2' \times Ew/(2 \times n_2)))^{0.5}$                                                                    | 3,68                                             | en el extremo inferior del vertedro            | m/s                                              |
| 20      | 2.2 2.2. 20110001011 Offerigital presidites                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ~ <u>/</u>       | 3,550           |                                                  | (Lg/ω <sub>2</sub> ) (Lπ - ω <sub>2</sub> Λ LW/(2 Λ H <sub>2</sub> )))                                                                    | 5,55                                             | Altura del calado de agua en el                | 5                                                |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                 |                                                  | h1 = 0,5 x Ew                                                                                                                             | 0,51                                             | vertedero al ingreso                           | m                                                |
| 21      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                 |                                                  | ·                                                                                                                                         |                                                  | Altura del calado de agua en el                |                                                  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                 |                                                  | h2 = h1/n <sub>2</sub>                                                                                                                    | 0,06                                             | vertedero a la salida                          | m                                                |
| 22      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                 |                                                  |                                                                                                                                           |                                                  | Calado de agua a la salida                     |                                                  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                 |                                                  | d2 = Y + h2                                                                                                                               | 0,22                                             | del vertedero lateral                          | m                                                |
| 23      | Relación calado a diámetro o ancho del                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                 |                                                  |                                                                                                                                           |                                                  | Determinación del coeficiente                  | 1                                                |
|         | colector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | d2/B             | 0,272           |                                                  | K = f(d2/B)                                                                                                                               | 0,05                                             | K1 para determinación caudal                   | ļ                                                |
| 24      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                 |                                                  | 0.00                                                                                                                                      |                                                  | Caudal a trasnportar despues del               | _                                                |
|         | Delection in the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |                  |                 | <u> </u>                                         | $Q = K \times (D^{8/3} \times i^{1/2})/n$                                                                                                 | 0,1926                                           | vertedero lateral                              | m <sup>3</sup> /s                                |
| 25      | Relación longitud ancho del canal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L/B              | 8,88            | }                                                | -0 - #/ /D                                                                                                                                | 0.00                                             | Valor a verificar en la tabla de la            |                                                  |
| 200     | Relación calado a energía específica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | W                | 0,1569          |                                                  | n2 = f(L/B;w)                                                                                                                             | 8,80                                             | figura 5.16 pag 199 Metcalf y Eddy             | 1                                                |
| 26      | Diámetro de la tubería para Q sanitario                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ds<br>OS         | 0,500           | m<br>m <sup>3</sup> /o                           | V = 00 ·· = 1/D=8/3 ·· · · 1/2 ·                                                                                                          | 0.4072                                           | Relación par determinación de                  |                                                  |
|         | Caudal Sanitario máximo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | QS<br>i          | 0,113<br>0,0036 | m³/s<br>m/m                                      | $K = QS \times n/(Ds^{8/3} \times i^{1/2})$                                                                                               | 0,1073                                           | calado de agua en la tubería                   | 1                                                |
| [       | Pendiente de la tubería o canal<br>Rugosidad de la tubería ocanal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n                | 0,0036          | 111/111                                          | 1                                                                                                                                         |                                                  |                                                |                                                  |
| 27      | ragosada de la labella deallai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  | 3,000           |                                                  | <del> </del>                                                                                                                              |                                                  | Relación calado a diámetro ó                   | l                                                |
| -       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                 |                                                  | Y/B = f(K)                                                                                                                                | 0,40                                             | ancho                                          | m                                                |
| 28      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                 |                                                  | ,                                                                                                                                         | -,                                               | calado de agua en la tubería circular          |                                                  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                 |                                                  | Y <sub>2</sub> = (Y/B) x B                                                                                                                | 0,20                                             | ó rectangular con caudal mínimo                | m/s                                              |
| 29      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                 |                                                  |                                                                                                                                           | 0,01                                             | Desnivel a que se debe colocar la              |                                                  |
| L I     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                 | <u></u>                                          | Δ = Y2 - Y                                                                                                                                | 0,04                                             | t.sanitaria respescto a la t.principal         | <u>L</u>                                         |
| 30      | K para relación (d/D) <sub>max</sub> = 94%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Kmax             | 0,3353          |                                                  |                                                                                                                                           | ,                                                | Caudal máximo a llevar en la tubería           | 1                                                |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | •               | •                                                | •                                                                                                                                         | •                                                | •                                              | •                                                |

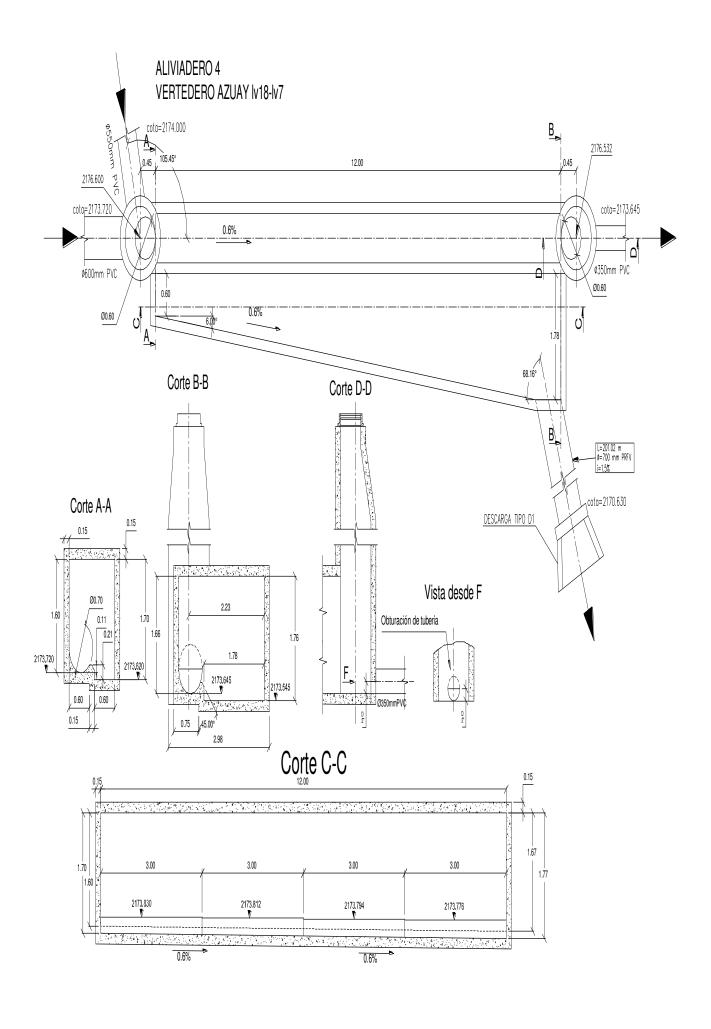

|                      |                                                                                                                                                                                  | PARA CANAL                | ES CIRCUL                                  | ARES OF                                          | RECTANGULARES DOS TUBERIAS DE LL                                                                                                   | .EGADA                  |                                                                                                                                                                                                                                                                      |                   |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| PASO                 | DATOS                                                                                                                                                                            | SIMBOLO                   | VALOR                                      | UNIDAD                                           | CRITERIO                                                                                                                           | CALCULO                 | RESULTADO                                                                                                                                                                                                                                                            | UNIDAD            |
|                      |                                                                                                                                                                                  |                           |                                            |                                                  | Q-max = Kmax x Ds <sup>8/3</sup> x i <sup>1/2</sup> / n                                                                            | 0,352                   | sanitaria                                                                                                                                                                                                                                                            | m <sup>3</sup> /s |
| 31                   | K1 para determinar área para máximo caudal                                                                                                                                       | K1                        | 0,7662                                     |                                                  | V-max-s = Q-max/(K1 x Ds <sup>2</sup> )                                                                                            | 1,84                    | Velocidad con caudal máximo                                                                                                                                                                                                                                          | m/s               |
| 32                   | Cálculo con la ecuación de Babbit                                                                                                                                                |                           |                                            |                                                  |                                                                                                                                    |                         | Calado de agua a caudal máximo                                                                                                                                                                                                                                       |                   |
| 33                   |                                                                                                                                                                                  |                           |                                            |                                                  | Ymax = 0,94 x Ds                                                                                                                   | 0,47                    | Calado de agua a la salida del                                                                                                                                                                                                                                       | m                 |
| 34                   |                                                                                                                                                                                  |                           |                                            |                                                  | h2 = Ymax - Y <sub>2</sub>                                                                                                         | 0,27                    | vertedero lateral.  Calado de agua al ingreso del                                                                                                                                                                                                                    | m                 |
| 35                   | Velocidad de aproximación con caudal máximo                                                                                                                                      | Vmax                      | 2,65                                       | m/s                                              | h1 = H - Y 6 h1 = 0,94 x D - Y<br>L = 7,55 x Vmax x d x log(h1/h2)                                                                 | 5,46                    | vertedero lateral.  Determinación de la longitud  del vertedero lateral                                                                                                                                                                                              | m<br>m            |
| Dimens               | sionamiento de la transición para giros de                                                                                                                                       | l<br>la tubería sanitar   | ia                                         |                                                  | E = 7,55 X VIIIAX X G X log(IT/IIZ)                                                                                                | 3,40                    | dei vertedero lateral                                                                                                                                                                                                                                                |                   |
| 36                   | Diámetro o base tubería ingreso                                                                                                                                                  | BoD                       | 0,8                                        | m                                                |                                                                                                                                    |                         | Longitud de la transición                                                                                                                                                                                                                                            |                   |
|                      | Diámetro o base tubería salida<br>Angulo de transición                                                                                                                           | Ds<br>θ                   | 0,5<br>6                                   | m<br>grados                                      | I = (B-Ds)/(tagθ)                                                                                                                  | 2,9                     |                                                                                                                                                                                                                                                                      | m                 |
| 37                   | Relación diámetro tubería versus radio de<br>curvatura recomendado                                                                                                               | r/Ds                      | 2                                          |                                                  | r = 2 x Ds                                                                                                                         | 1                       | Radio de curvatura en la tubería                                                                                                                                                                                                                                     |                   |
| 38                   | Angulo entre el colector principal<br>y la tubería sanitaria                                                                                                                     | ω                         | 0                                          | grados                                           | Ic = ω x (r + Ds/2)/180                                                                                                            | 0                       | Longitud de la curva                                                                                                                                                                                                                                                 | m                 |
| 39                   | Coeficiente de pérdida por cambio de<br>dirección según el ángulo de giro                                                                                                        | р                         | 0                                          |                                                  | hf = p x V-max-s <sup>2</sup> /(2 x g)                                                                                             | 0,000                   | Pérdida de carga porcambio de dirección en el interior del colector                                                                                                                                                                                                  | m                 |
| 40                   |                                                                                                                                                                                  |                           |                                            |                                                  | $i = (hf + \Delta)/(I + Ic)$                                                                                                       | 1,38%                   | Pendiente en el canal de transición<br>por cambio de dirección y desnivel                                                                                                                                                                                            | %                 |
|                      | VERTEDERO CARLOS RIVERA Iv6                                                                                                                                                      |                           |                                            |                                                  | 1                                                                                                                                  | 1                       | 1                                                                                                                                                                                                                                                                    |                   |
| 1                    | Diámetro o ancho de la tubería UNO                                                                                                                                               | DóB                       | 0,500                                      | m                                                |                                                                                                                                    |                         |                                                                                                                                                                                                                                                                      |                   |
|                      | Altura del canal recatangular                                                                                                                                                    | H                         | 0,000                                      | m<br>m/m                                         | 0 58/3 -1/2                                                                                                                        | 0.44                    | Caudal mávimo nasa sasal                                                                                                                                                                                                                                             |                   |
|                      | Pendiente de la tubería o canal UNO<br>Rugosidad de la tubería o canal UNO                                                                                                       | i<br>n                    | 0,006                                      | m/m                                              | Q-max1 = Kmax x D <sup>8/3</sup> x i <sup>1/2</sup> / n                                                                            | 0,44                    | Caudal máximo para canal<br>circular                                                                                                                                                                                                                                 | m <sup>3</sup> /s |
|                      | K para relación (d/D) <sub>max</sub> = 94%                                                                                                                                       | Kmax                      | 0,009                                      | <del>                                     </del> | 1                                                                                                                                  |                         | Circulai                                                                                                                                                                                                                                                             | III /S            |
| 2                    | Diámetro o ancho de la tubería DOS                                                                                                                                               | D ó B                     | 0,600                                      | m                                                |                                                                                                                                    |                         | 1                                                                                                                                                                                                                                                                    | <b> </b>          |
| _                    | Altura del canal recatangular                                                                                                                                                    | H                         | 0,000                                      | m                                                | 1                                                                                                                                  |                         |                                                                                                                                                                                                                                                                      | 1                 |
|                      | Pendiente de la tubería o canal DOS                                                                                                                                              | i                         | 0,004                                      | m/m                                              | Q-max2 = Kmax x D <sup>8/3</sup> x i <sup>1/2</sup> / n                                                                            | 0,57                    | Caudal máximo para canal                                                                                                                                                                                                                                             | 1                 |
|                      | Rugosidad de la tubería o canal DOS                                                                                                                                              | n                         | 0,009                                      |                                                  | - Innex AD AT /II                                                                                                                  | -,                      | circular                                                                                                                                                                                                                                                             | m <sup>3</sup> /s |
|                      | K para relación (d/D) <sub>max</sub> = 94%                                                                                                                                       | Kmax                      | 0,3353                                     |                                                  | 1                                                                                                                                  |                         |                                                                                                                                                                                                                                                                      |                   |
| 3                    | Caudal pluvial a transportar las dos                                                                                                                                             |                           |                                            |                                                  |                                                                                                                                    |                         | Caudal máximo a transportar                                                                                                                                                                                                                                          |                   |
|                      | tuberías para un período de 5 años                                                                                                                                               | Qmax-d                    | 679,72                                     | It/s                                             | Qmax = Qmax1 + Qmax2                                                                                                               | 1,02                    | las dos tuberías                                                                                                                                                                                                                                                     | m <sup>3</sup> /s |
| 4                    | Diámetro o ancho de la tubería                                                                                                                                                   | DóB                       | 0,600                                      | m                                                |                                                                                                                                    |                         |                                                                                                                                                                                                                                                                      |                   |
|                      | Pendiente de la tubería o canal                                                                                                                                                  | i                         | 0,006                                      | m/m                                              | Q-max = Kmax x D <sup>8/3</sup> x i <sup>1/2</sup> / n                                                                             | 0,74                    | Caudal máximo para canal                                                                                                                                                                                                                                             |                   |
|                      | Rugosidad de la tubería o canal                                                                                                                                                  | n                         | 0,009                                      |                                                  | 1                                                                                                                                  |                         | circular                                                                                                                                                                                                                                                             | m <sup>3</sup> /s |
|                      | K para relación (d/D) <sub>max</sub> = 94%                                                                                                                                       | Kmax                      | 0,3353                                     |                                                  | 1                                                                                                                                  |                         |                                                                                                                                                                                                                                                                      |                   |
| 5                    | K1 para calcular área para Qmax                                                                                                                                                  | K1                        | 0,7662                                     |                                                  |                                                                                                                                    | 0,28                    | Area de sección transversal                                                                                                                                                                                                                                          |                   |
|                      |                                                                                                                                                                                  |                           |                                            |                                                  | $Am = K1 \times D^2$                                                                                                               |                         | para caudal máximo tub. Circular                                                                                                                                                                                                                                     | m <sup>2</sup>    |
|                      |                                                                                                                                                                                  |                           |                                            |                                                  | Vmax = Qmax/A                                                                                                                      | 2,68                    | Velocidad transversal<br>con caudal máximo                                                                                                                                                                                                                           | m/s               |
| 6                    | Altura del canal                                                                                                                                                                 | Н                         | 0,000                                      | m                                                | VIII GIII GII                                                                                                                      | 2,00                    | Determinación de Kmax para                                                                                                                                                                                                                                           | 11110             |
|                      | Relación H/B                                                                                                                                                                     | H/B                       | 0,000                                      |                                                  | Kmax = f(H/B)                                                                                                                      | canal circular          | canales rectangulares                                                                                                                                                                                                                                                |                   |
| 7                    |                                                                                                                                                                                  |                           |                                            |                                                  | Q-max = Kmax x B <sup>8/3</sup> x i <sup>1/2</sup> / n                                                                             | canal circular          | Caudal máximo a transportar<br>para tubería rectangular                                                                                                                                                                                                              | m³/s              |
| 8                    |                                                                                                                                                                                  |                           |                                            |                                                  |                                                                                                                                    |                         | Velocidad transversal                                                                                                                                                                                                                                                |                   |
|                      |                                                                                                                                                                                  |                           |                                            |                                                  | Vmax = Q-max/(B x H)                                                                                                               | canal circular          | con caudal máximo                                                                                                                                                                                                                                                    | m/s               |
| 9                    | Caudal Sanitario Medio                                                                                                                                                           | Qs<br>R                   | 43,050<br>3,000                            | It/s                                             | OC = B :: O=/4000                                                                                                                  | 0.420                   | Caudal máximo a transportar en                                                                                                                                                                                                                                       | 3.                |
| 10                   | Relación de dilución entre 2,5 y 5                                                                                                                                               | R                         | 3,000                                      |                                                  | QS = R x Qs/1000                                                                                                                   | 0,129                   | tubería sanitaria<br>Relación par determinación de                                                                                                                                                                                                                   | m <sup>3</sup> /s |
| 10                   |                                                                                                                                                                                  |                           |                                            |                                                  | $K = QS \times n/(D^{8/3} \times i^{1/2})$                                                                                         | 0,0586                  | calado de agua en la tubería                                                                                                                                                                                                                                         |                   |
| 11                   |                                                                                                                                                                                  |                           |                                            |                                                  | K GOKING XI )                                                                                                                      | .,                      | Relación calado a diámetro ó                                                                                                                                                                                                                                         |                   |
|                      |                                                                                                                                                                                  |                           |                                            |                                                  | Y/B = f(K)                                                                                                                         | 0,29                    | ancho                                                                                                                                                                                                                                                                |                   |
| 12                   |                                                                                                                                                                                  |                           |                                            |                                                  | Y = (Y/B) x B                                                                                                                      | 0,17                    | calado de agua en la tubería circular<br>ó rectangular con caudal mínimo                                                                                                                                                                                             | m                 |
| 13                   | Determinación del coeficiente K1                                                                                                                                                 | 144 (O(ID)                | 0.40                                       |                                                  |                                                                                                                                    |                         | Area de sección transversal                                                                                                                                                                                                                                          |                   |
| 14                   |                                                                                                                                                                                  | K1 = f(Y/B)               | 0,19                                       |                                                  | A = K1 x D <sup>2</sup>                                                                                                            | 0,0681                  | en tubería circual  Velocidad transversal en la                                                                                                                                                                                                                      | m <sup>2</sup>    |
| 15                   |                                                                                                                                                                                  |                           |                                            |                                                  | V = Q/A                                                                                                                            | 1,90                    | tubería circual con caudal mínimo Velocidad transversal en la tubería                                                                                                                                                                                                |                   |
| 13                   |                                                                                                                                                                                  |                           |                                            | 518,12                                           | V = Q/(B x Y)                                                                                                                      | canal circular          |                                                                                                                                                                                                                                                                      | m                 |
|                      | Cálculo con la ecuación de Ackers                                                                                                                                                |                           | Ü                                          | 118,55                                           |                                                                                                                                    |                         | J. J. J. Zan Zan Zanda Illianio                                                                                                                                                                                                                                      |                   |
| 16                   | Velocidad con caudal máximo                                                                                                                                                      | Vn                        | 2,679                                      | m/s                                              |                                                                                                                                    |                         | Cálculo de la energía específica                                                                                                                                                                                                                                     |                   |
|                      | Coeficiente corrección energía cinetica                                                                                                                                          | $\alpha_1$                | 1,200                                      |                                                  | Ew = $\alpha \times Vn^2/2g + (dn - Y)$                                                                                            |                         | 1                                                                                                                                                                                                                                                                    |                   |
|                      | Aceleración de la gravedad                                                                                                                                                       | g                         | 9,810                                      | m/s                                              | ]                                                                                                                                  | 0,83                    |                                                                                                                                                                                                                                                                      | m                 |
|                      | Altura del canal para Qmáximo                                                                                                                                                    | dn                        | 0,560                                      | m                                                |                                                                                                                                    |                         |                                                                                                                                                                                                                                                                      |                   |
| 17                   |                                                                                                                                                                                  |                           |                                            |                                                  |                                                                                                                                    |                         | Relación calado a energía                                                                                                                                                                                                                                            | 1                 |
| 18                   | Relación entre h1 y h2 (calado de ingreso                                                                                                                                        | n.                        | 15,000                                     |                                                  | (w=Y/Ew) < 0.6<br>$L_2 = 2.03 \times B \times (2.828 \times \sqrt{(n_2 - 0.4)(1 - 0.4w)} +$                                        | 0,21                    | específica<br>Longitud requerida para el                                                                                                                                                                                                                             |                   |
| 10                   | y calado de salida)                                                                                                                                                              | n <sub>2</sub>            | 10,000                                     |                                                  | $L_2 = 2.03 \times B \times (2.828 \times \sqrt{(n_2 - 0.4)(1 - 0.4 w)} + 0.31 w - 0.984 \text{ ar cos } \sqrt{(0.4/n_1)} + 0.065$ | 7,90                    | vertedero                                                                                                                                                                                                                                                            | m                 |
| 19                   | Coeficiente de corrección energía cinética                                                                                                                                       | $\alpha_2$                | 1,400                                      | <u> </u>                                         | 7 U . 31 W = U . 704 UT CUS \( \langle U . 4 \/ H  \rangle + U . 065 \)                                                            | 1,50                    | Determinación de la velocidad                                                                                                                                                                                                                                        |                   |
|                      | Coeficiente de corrección energía presiones                                                                                                                                      | α2,                       | 0,950                                      |                                                  | $V2 = ((2g/\alpha_2) (Ew - \alpha_2' \times Ew/(2 \times n_2)))^{0.5}$                                                             | 3,35                    | en el extremo inferior del vertedro                                                                                                                                                                                                                                  | m/s               |
| 20                   |                                                                                                                                                                                  |                           |                                            |                                                  | h1 = 0,5 x Ew                                                                                                                      | 0,41                    | Altura del calado de agua en el<br>vertedero al ingreso                                                                                                                                                                                                              | m                 |
| 21                   |                                                                                                                                                                                  |                           |                                            |                                                  | h2 = h1/n <sub>2</sub>                                                                                                             | 0,03                    | Altura del calado de agua en el vertedero a la salida                                                                                                                                                                                                                | m                 |
|                      |                                                                                                                                                                                  |                           |                                            |                                                  |                                                                                                                                    | 0,20                    | Calado de agua a la salida<br>del vertedero lateral                                                                                                                                                                                                                  | m                 |
| 22                   |                                                                                                                                                                                  |                           |                                            |                                                  | d2 = Y + h2                                                                                                                        |                         |                                                                                                                                                                                                                                                                      |                   |
| 22                   | Relación calado a diámetro o ancho del colector                                                                                                                                  | d2/B                      | 0.336                                      |                                                  |                                                                                                                                    |                         | Determinación del coeficiente                                                                                                                                                                                                                                        |                   |
|                      | Relación calado a diámetro o ancho del colector                                                                                                                                  | d2/B                      | 0,336                                      |                                                  | K = f(d2/B)                                                                                                                        | 0,07                    | Determinación del coeficiente<br>K1 para determinación caudal<br>Caudal a trasnportar despues del                                                                                                                                                                    |                   |
| 23                   | colector                                                                                                                                                                         |                           |                                            |                                                  |                                                                                                                                    |                         | Determinación del coeficiente<br>K1 para determinación caudal<br>Caudal a trasnportar despues del<br>vertedero lateral                                                                                                                                               | m³/s              |
| 23                   | colector  Relación longitud ancho del canal                                                                                                                                      | L/B                       | 13,17                                      |                                                  | K = f(d2/B) Q = K x (D <sup>8/3</sup> x i <sup>1/2</sup> )/n                                                                       | 0,07<br>0,1616          | Determinación del coeficiente<br>K1 para determinación caudal<br>Caudal a trasnportar despues del<br>vertedero lateral<br>Valor a verificar en la tabla de la                                                                                                        |                   |
| 23                   | colector                                                                                                                                                                         |                           |                                            | m                                                | K = f(d2/B)                                                                                                                        | 0,07                    | Determinación del coeficiente<br>K1 para determinación caudal<br>Caudal a trasnportar despues del<br>vertedero lateral                                                                                                                                               |                   |
| 23<br>24<br>25       | colector  Relación longitud ancho del canal Relación calado a energía especifica                                                                                                 | L/B<br>w                  | 13,17<br>0,2109                            | m<br>m³/s                                        | $K = f(d2/B)$ $Q = K \times (D^{8/3} \times i^{1/2})/n$ $n2 = f(L/B; w)$                                                           | 0,07<br>0,1616          | Determinación del coeficiente<br>K1 para determinación caudal<br>Caudal a trasnportar despues del<br>vertedero lateral<br>Valor a verificar en la tabla de la<br>figura 5.16 pag 199 Metcalf y Eddy                                                                  |                   |
| 23<br>24<br>25       | colector  Relación longitud ancho del canal Relación calado a energía especifica Diámetro de la tubería para Q sanitario                                                         | L/B<br>w<br>Ds            | 13,17<br>0,2109<br>0,400                   |                                                  | K = f(d2/B) Q = K x (D <sup>8/3</sup> x i <sup>1/2</sup> )/n                                                                       | 0,07<br>0,1616<br>12,30 | Determinación del coeficiente K1 para determinación caudal Caudal a trasportar despues del vertedero lateral Valor a verificar en la tabla de la figura 5.16 pag 199 Metcalf y Eddy Relación par determinación de                                                    |                   |
| 23<br>24<br>25<br>26 | colector  Relación longitud ancho del canal Relación calado a energía específica Diámetro de la tubería para Q sanitario Caudal Sanitario máximo                                 | L/B<br>w<br>Ds            | 13,17<br>0,2109<br>0,400<br>0,129          | m³/s                                             | $K = f(d2/B)$ $Q = K \times (D^{8/3} \times i^{1/2})/n$ $n2 = f(L/B; w)$                                                           | 0,07<br>0,1616<br>12,30 | Determinación del coeficiente<br>K1 para determinación caudal<br>Caudal a trasnportar despues del<br>vertedero lateral<br>Valor a verificar en la tabla de la<br>figura 5.16 pag 199 Metcalf y Eddy<br>Relación par determinación de<br>calado de agua en la tubería |                   |
| 23<br>24<br>25       | colector  Relación longitud ancho del canal Relación calado a energía específica Diámetro de la tubería para Q sanitario Caudal Sanitario máximo Pendiente de la tubería o canal | L/B<br>w<br>Ds<br>QS<br>i | 13,17<br>0,2109<br>0,400<br>0,129<br>0,004 | m³/s                                             | $K = f(d2/B)$ $Q = K \times (D^{8/3} \times i^{1/2})/n$ $n2 = f(L/B; w)$                                                           | 0,07<br>0,1616<br>12,30 | Determinación del coeficiente K1 para determinación caudal Caudal a trasportar despues del vertedero lateral Valor a verificar en la tabla de la figura 5.16 pag 199 Metcalf y Eddy Relación par determinación de                                                    |                   |

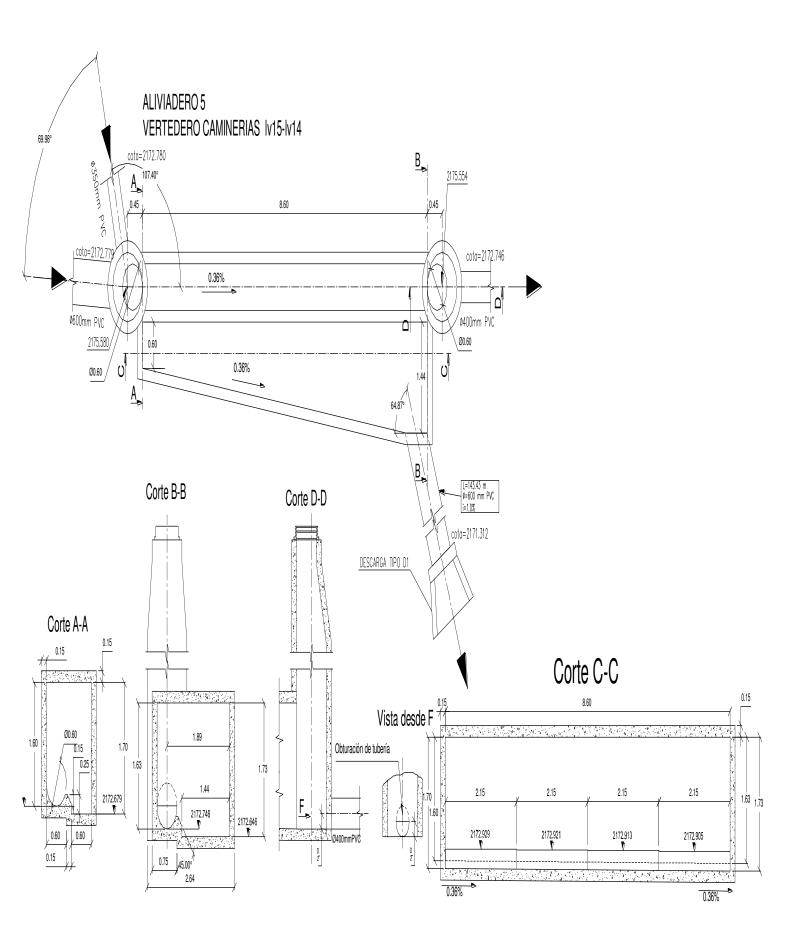

|                                              |                                                                                                                                                                                                                                                                                                                                                                                                             | PARA CANAL                                                                                                     | LES CIRCUL                                                   | ARES OF              | ECTANGULARES DOS TUBERIAS DE LL                                                                                                                                                                                                                                                                                                                                                                                         | .EGADA                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |
|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| PASO                                         | DATOS                                                                                                                                                                                                                                                                                                                                                                                                       | SIMBOLO                                                                                                        | VALOR                                                        | UNIDAD               | CRITERIO                                                                                                                                                                                                                                                                                                                                                                                                                | CALCULO                                                 | RESULTADO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | UNIDA              |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                |                                                              |                      | Y <sub>2</sub> = (Y/B) x B                                                                                                                                                                                                                                                                                                                                                                                              | 0,24                                                    | ó rectangular con caudal mínimo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | m/s                |
| 29                                           |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                |                                                              |                      |                                                                                                                                                                                                                                                                                                                                                                                                                         | 0,02                                                    | Desnivel a que se debe colocar la                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                |                                                              |                      | Δ = Y2 - Y                                                                                                                                                                                                                                                                                                                                                                                                              | 0,07                                                    | t.sanitaria respescto a la t.principal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |
| 30                                           | K para relación (d/D) <sub>max</sub> = 94%                                                                                                                                                                                                                                                                                                                                                                  | Kmax                                                                                                           | 0,3353                                                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                         | Caudal máximo a llevar en la tubería                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                |                                                              |                      | Q-max = Kmax x Ds <sup>8/3</sup> x i <sup>1/2</sup> / n                                                                                                                                                                                                                                                                                                                                                                 | 0,2021                                                  | sanitaria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | m <sup>3</sup> /s  |
| 31                                           | K1 para determinar área para máximo                                                                                                                                                                                                                                                                                                                                                                         | K1                                                                                                             | 0,7662                                                       |                      | 2 (1144 - 5-2)                                                                                                                                                                                                                                                                                                                                                                                                          | 4.05                                                    | Velocidad con caudal máximo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (-                 |
|                                              | caudal  Cálculo con la ecuación de Babbit                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                |                                                              |                      | V-max-s = Q-max/(K1 x Ds <sup>2</sup> )                                                                                                                                                                                                                                                                                                                                                                                 | 1,65                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | m/s                |
| 32                                           | Calculo con la ecuación de Babbit                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                | 1                                                            | 1                    |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                         | Calado de agua a caudal máximo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                  |
| 02                                           |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                |                                                              |                      | Ymax = 0,94 x Ds                                                                                                                                                                                                                                                                                                                                                                                                        | 0,376                                                   | Odiado de agua a caddai maximo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | m                  |
| 33                                           |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                |                                                              |                      |                                                                                                                                                                                                                                                                                                                                                                                                                         | 2,272                                                   | Calado de agua a la salida del                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                |                                                              |                      | h2 = Ymax - Y <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                              | 0,136                                                   | vertedero lateral.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | m                  |
| 34                                           |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                |                                                              |                      |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                         | Calado de agua al ingreso del                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                |                                                              |                      | h1 = H - Y 6 h1 = 0,94 x D - Y                                                                                                                                                                                                                                                                                                                                                                                          | 0,39                                                    | vertedero lateral.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | m                  |
| 35                                           | Velocidad de aproximación con                                                                                                                                                                                                                                                                                                                                                                               | Vmax                                                                                                           | 2,68                                                         | m/s                  |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                         | Determinación de la longitud                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |
|                                              | caudal máximo                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                | ļ                                                            |                      | L = 7,55 x Vmax x d x log(h1/h2)                                                                                                                                                                                                                                                                                                                                                                                        | 5,55                                                    | del vertedero lateral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | m                  |
| 36                                           | sionamiento de la transición para giros de l                                                                                                                                                                                                                                                                                                                                                                | B o D                                                                                                          |                                                              |                      | T                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                         | I annitud da la transisión                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |
| 30                                           | Diámetro o base tubería ingreso Diámetro o base tubería salida                                                                                                                                                                                                                                                                                                                                              | Ds                                                                                                             | 0,6<br>0,4                                                   | m<br>m               | I = (B-Ds)/(tagθ)                                                                                                                                                                                                                                                                                                                                                                                                       | 1,9                                                     | Longitud de la transición                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | m                  |
|                                              | Angulo de transición                                                                                                                                                                                                                                                                                                                                                                                        | θ                                                                                                              | 6                                                            | grados               | 1 = (2 23)/(tage)                                                                                                                                                                                                                                                                                                                                                                                                       | 1,5                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |
| 37                                           | Relación diámetro tubería versus radio de                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                | -                                                            | g                    |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                         | Radio de curvatura en la tubería                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |
|                                              | curvatura recomendado                                                                                                                                                                                                                                                                                                                                                                                       | r/Ds                                                                                                           | 2                                                            |                      | r = 2 x Ds                                                                                                                                                                                                                                                                                                                                                                                                              | 0,8                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |
| 38                                           | Angulo entre el colector principal                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                |                                                              |                      |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                         | Longitud de la curva                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |
|                                              | y la tubería sanitaria                                                                                                                                                                                                                                                                                                                                                                                      | ω                                                                                                              | 0                                                            | grados               | Ic = ω x (r + Ds/2)/180                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | m                  |
| 39                                           | Coeficiente de pérdida por cambio de                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                |                                                              |                      | _                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                         | Pérdida de carga porcambio de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |
| 40                                           | dirección según el ángulo de giro                                                                                                                                                                                                                                                                                                                                                                           | р                                                                                                              | 0                                                            |                      | hf = p x V-max-s <sup>2</sup> /(2 x g)                                                                                                                                                                                                                                                                                                                                                                                  | 0,000                                                   | dirección en el interior del colector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | m                  |
| 40                                           |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                |                                                              |                      | i = /bf + A\//I + l=\                                                                                                                                                                                                                                                                                                                                                                                                   | 2 470/                                                  | Pendiente en el canal de transición                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0/                 |
|                                              | VERTEDERO JOSE ANTONIO AGUI                                                                                                                                                                                                                                                                                                                                                                                 | I AR IV2 - 19.                                                                                                 | ALV 10                                                       | l                    | $i = (hf + \Delta)/(l + lc)$                                                                                                                                                                                                                                                                                                                                                                                            | 3,47%                                                   | por cambio de dirección y desnivel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | %                  |
| 1                                            | Diámetro o ancho de la tubería UNO                                                                                                                                                                                                                                                                                                                                                                          | DóB                                                                                                            | 0,700                                                        | m                    |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |
| •                                            | Altura del canal recatangular                                                                                                                                                                                                                                                                                                                                                                               | H                                                                                                              | 0,000                                                        | m                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |
|                                              | Pendiente de la tubería o canal UNO                                                                                                                                                                                                                                                                                                                                                                         | i                                                                                                              | 0,005                                                        | m/m                  | Q-max1 = Kmax x D <sup>8/3</sup> x i <sup>1/2</sup> / n                                                                                                                                                                                                                                                                                                                                                                 | 1,00                                                    | Caudal máximo para canal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |
|                                              | Rugosidad de la tubería o canal UNO                                                                                                                                                                                                                                                                                                                                                                         | n                                                                                                              | 0,009                                                        |                      |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                         | circular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | m <sup>3</sup> /s  |
|                                              | K para relación (d/D) <sub>max</sub> = 94%                                                                                                                                                                                                                                                                                                                                                                  | Kmax                                                                                                           | 0,3353                                                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |
| 2                                            | Diámetro o ancho de la tubería DOS                                                                                                                                                                                                                                                                                                                                                                          | DóB                                                                                                            | 0,600                                                        | m                    |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |
|                                              | Altura del canal recatangular                                                                                                                                                                                                                                                                                                                                                                               | H                                                                                                              | 0,000                                                        | m                    | p. co.                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |
|                                              | Pendiente de la tubería o canal DOS                                                                                                                                                                                                                                                                                                                                                                         | i                                                                                                              | 0,004                                                        | m/m                  | Q-max2 = Kmax x D <sup>8/3</sup> x i <sup>1/2</sup> / n                                                                                                                                                                                                                                                                                                                                                                 | 0,60                                                    | Caudal máximo para canal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                  |
|                                              | Rugosidad de la tubería o canal DOS                                                                                                                                                                                                                                                                                                                                                                         | n                                                                                                              | 0,009                                                        |                      |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                         | circular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | m³/s               |
| 3                                            | K para relación (d/D) <sub>max</sub> = 94%  Caudal pluvial a transportar las dos                                                                                                                                                                                                                                                                                                                            | Kmax                                                                                                           | 0,3353                                                       | -                    |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                         | Caudal másima a transacitas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>           |
| 3                                            | tuberías para un período de 5 años                                                                                                                                                                                                                                                                                                                                                                          | Qmax-d                                                                                                         | 1.140,97                                                     | It/s                 | Qmax = Qmax1 + Qmax2                                                                                                                                                                                                                                                                                                                                                                                                    | 1,59                                                    | Caudal máximo a transportar<br>las dos tuberías                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | m <sup>3</sup> /s  |
| 4                                            | Diámetro o ancho de la tubería                                                                                                                                                                                                                                                                                                                                                                              | DóB                                                                                                            | 0,700                                                        | m                    | QIIIdx - QIIIdx I + QIIIdx2                                                                                                                                                                                                                                                                                                                                                                                             | 1,00                                                    | ido dos taberido                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 111 /3             |
|                                              | Pendiente de la tubería o canal                                                                                                                                                                                                                                                                                                                                                                             | i                                                                                                              | 0,007                                                        | m/m                  | Q-max = Kmax x D <sup>8/3</sup> x i <sup>1/2</sup> / n                                                                                                                                                                                                                                                                                                                                                                  | 1,20                                                    | Caudal máximo para canal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |
|                                              | Rugosidad de la tubería o canal                                                                                                                                                                                                                                                                                                                                                                             | n                                                                                                              | 0,009                                                        |                      | <b>4.</b>                                                                                                                                                                                                                                                                                                                                                                                                               |                                                         | circular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | m <sup>3</sup> /s  |
|                                              | K para relación (d/D) <sub>max</sub> = 94%                                                                                                                                                                                                                                                                                                                                                                  | Kmax                                                                                                           | 0,3353                                                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |
| 5                                            | K1 para calcular área para Qmax                                                                                                                                                                                                                                                                                                                                                                             | K1                                                                                                             | 0,7662                                                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                         | 0,38                                                    | Area de sección transversal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                |                                                              |                      | $Am = K1 \times D^2$                                                                                                                                                                                                                                                                                                                                                                                                    |                                                         | para caudal máximo tub. Circular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | m <sup>2</sup>     |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                |                                                              |                      |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                         | Velocidad transversal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |
| 6                                            | Altimo del conel                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                | 0.000                                                        |                      | Vmax = Qmax/A                                                                                                                                                                                                                                                                                                                                                                                                           | 3,21                                                    | con caudal máximo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | m/s                |
| О                                            | Altura del canal<br>Relación H/B                                                                                                                                                                                                                                                                                                                                                                            | H<br>H/B                                                                                                       | 0,000                                                        | m                    | Kmax = f(H/B)                                                                                                                                                                                                                                                                                                                                                                                                           | canal circular                                          | Determinación de Kmax para<br>canales rectangulares                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |
| 7                                            | TCIACIOIT I/D                                                                                                                                                                                                                                                                                                                                                                                               | 11/15                                                                                                          | 0,000                                                        |                      | Killax = I(IIID)                                                                                                                                                                                                                                                                                                                                                                                                        | cariai circulai                                         | Caudal máximo a transportar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                |                                                              |                      | Q-max = Kmax x B <sup>8/3</sup> x i <sup>1/2</sup> / n                                                                                                                                                                                                                                                                                                                                                                  | canal circular                                          | para tubería rectangular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | m <sup>3</sup> /s  |
| 8                                            |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                |                                                              |                      |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                         | Velocidad transversal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                |                                                              |                      | Vmax = Q-max/(B x H)                                                                                                                                                                                                                                                                                                                                                                                                    | canal circular                                          | con caudal máximo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | m/s                |
| 9                                            | Caudal Sanitario Medio                                                                                                                                                                                                                                                                                                                                                                                      | Qs                                                                                                             | 46,210                                                       | It/s                 |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                         | Caudal máximo a transportar en                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |
| 40                                           | Relación de dilución entre 2,5 y 5                                                                                                                                                                                                                                                                                                                                                                          | R                                                                                                              | 3,000                                                        |                      | QS = R x Qs/1000                                                                                                                                                                                                                                                                                                                                                                                                        | 0,139                                                   | tubería sanitaria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | m <sup>3</sup> /s  |
| 10                                           |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                |                                                              |                      | $K = QS \times n/(D^{8/3} \times i^{1/2})$                                                                                                                                                                                                                                                                                                                                                                              | 0,0386                                                  | Relación par determinación de<br>calado de agua en la tubería                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |
| 11                                           |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                |                                                              |                      | K = QS X II/(D X I )                                                                                                                                                                                                                                                                                                                                                                                                    | 0,0300                                                  | Relación calado a diámetro ó                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                |                                                              |                      | Y/B = f(K)                                                                                                                                                                                                                                                                                                                                                                                                              | 0,23                                                    | ancho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |
| 12                                           |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                |                                                              |                      | ,                                                                                                                                                                                                                                                                                                                                                                                                                       | -,                                                      | calado de agua en la tubería circular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                  |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                |                                                              |                      | Y = (Y/B) x B                                                                                                                                                                                                                                                                                                                                                                                                           | 0,16                                                    | ó rectangular con caudal mínimo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | m                  |
| 13                                           | Determinación del coeficiente K1                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                |                                                              |                      | ·                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                         | Area de sección transversal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                             | K1 = f(Y/B)                                                                                                    | 0,14                                                         |                      | A = K1 x D <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                 | 0,0669                                                  | en tubería circual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | m <sup>2</sup>     |
| 14                                           |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                | •                                                            | i                    |                                                                                                                                                                                                                                                                                                                                                                                                                         | l                                                       | Velocidad transversal en la                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                |                                                              |                      |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |
| 15                                           |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                |                                                              |                      | V = Q/A                                                                                                                                                                                                                                                                                                                                                                                                                 | 2,07                                                    | tubería circual con caudal mínimo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |
| 15                                           |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                |                                                              | 040 27               |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                         | tubería circual con caudal mínimo<br>Velocidad transversal en la tubería                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |
| 15                                           | Cálculo con la ecuación de Ackere                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                |                                                              | 949,27<br>145,49     | V = Q/A<br>V = Q/(B x Y)                                                                                                                                                                                                                                                                                                                                                                                                | 2,07                                                    | tubería circual con caudal mínimo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | m                  |
| 15                                           | Cálculo con la ecuación de Ackers Velocidad con caudal máximo                                                                                                                                                                                                                                                                                                                                               | Vn                                                                                                             | 3.207                                                        | 145,49               |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                         | tubería circual con caudal mínimo<br>Velocidad transversal en la tubería<br>rectangular con caudal mínimo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | m                  |
|                                              | Cálculo con la ecuación de Ackers<br>Velocidad con caudal máximo<br>Coeficiente corrección energía cinetica                                                                                                                                                                                                                                                                                                 | Vn<br>α <sub>1</sub>                                                                                           | 3,207<br>1,200                                               |                      |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                         | tubería circual con caudal mínimo<br>Velocidad transversal en la tubería                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | m                  |
|                                              | Velocidad con caudal máximo Coeficiente corrección energía cinetica Aceleración de la gravedad                                                                                                                                                                                                                                                                                                              |                                                                                                                |                                                              | 145,49               | V = Q/(B x Y)                                                                                                                                                                                                                                                                                                                                                                                                           |                                                         | tubería circual con caudal mínimo<br>Velocidad transversal en la tubería<br>rectangular con caudal mínimo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | m                  |
| 16                                           | Velocidad con caudal máximo Coeficiente corrección energía cinetica                                                                                                                                                                                                                                                                                                                                         | $\alpha_1$                                                                                                     | 1,200                                                        | 145,49<br>m/s        | V = Q/(B x Y)                                                                                                                                                                                                                                                                                                                                                                                                           | canal circular                                          | tubería circual con caudal mínimo<br>Velocidad transversal en la tubería<br>rectangular con caudal mínimo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |
|                                              | Velocidad con caudal máximo Coeficiente corrección energía cinetica Aceleración de la gravedad                                                                                                                                                                                                                                                                                                              | α <sub>1</sub><br>g                                                                                            | 1,200<br>9,810                                               | 145,49<br>m/s<br>m/s | $V = Q/(B \times Y)$ $Ew = \alpha \times Vn^2/2g + (dn - Y)$                                                                                                                                                                                                                                                                                                                                                            | canal circular                                          | tubería circual con caudal mínimo Velocidad transversal en la tubería rectangular con caudal mínimo  Cálculo de la energía específica  Relación calado a energía                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |
| 16                                           | Velocidad con caudal máximo Coeficiente corrección energía cinetica Aceleración de la gravedad Altura del canal para Qmáximo                                                                                                                                                                                                                                                                                | α <sub>1</sub><br>g<br>dn                                                                                      | 1,200<br>9,810<br>0,660                                      | 145,49<br>m/s<br>m/s | $V = Q/(B \times Y)$ $Ew = \alpha \times Vn^{2}/2g + (dn - Y)$ $(w=Y/Ew) < 0.6$                                                                                                                                                                                                                                                                                                                                         | canal circular                                          | tubería circual con caudal mínimo Velocidad transversal en la tubería rectangular con caudal mínimo  Cálculo de la energía específica  Relación calado a energía específica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| 16                                           | Velocidad con caudal máximo Coeficiente corrección energía cinetica Aceleración de la gravedad Altura del canal para Qmáximo Relación entre h1 y h2 (calado de ingreso                                                                                                                                                                                                                                      | α <sub>1</sub><br>g                                                                                            | 1,200<br>9,810                                               | 145,49<br>m/s<br>m/s | $V = Q/(B \times Y)$ $Ew = \alpha \times Vn^2/2g + (dn - Y)$ $(w = Y/Ew) < 0.6$ $L_2 = 2.03 \times B \times (2.828 \times \sqrt{(n_2 - 0.4)(1 - 0.4w)} + (-0.4w) + (-0.4w)$                                                                                                                                                                                                                                             | 1,13<br>0,14                                            | tubería circual con caudal mínimo Velocidad transversal en la tubería rectangular con caudal mínimo  Cálculo de la energía especifica  Relación calado a energía especifica  Longitud requerida para el                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | m                  |
| 16                                           | Velocidad con caudal máximo Coeficiente corrección energía cinetica Aceleración de la gravedad Altura del canal para Qmáximo Relación entre h1 y h2 (calado de ingreso y calado de salida)                                                                                                                                                                                                                  | α <sub>1</sub><br>g<br>dn                                                                                      | 1,200<br>9,810<br>0,660                                      | 145,49<br>m/s<br>m/s | $V = Q/(B \times Y)$ $Ew = \alpha \times Vn^{2}/2g + (dn - Y)$ $(w=Y/Ew) < 0.6$                                                                                                                                                                                                                                                                                                                                         | canal circular                                          | tubería circual con caudal mínimo Velocidad transversal en la tubería rectangular con caudal mínimo  Cálculo de la energía específica  Relación calado a energía específica  Longitud requerida para el vertedero                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |
| 16                                           | Velocidad con caudal máximo Coeficiente corrección energía cinetica Aceleración de la gravedad Altura del canal para Qmáximo Relación entre h1 y h2 (calado de ingreso y calado de salida) Coeficiente de corrección energía cinética                                                                                                                                                                       | α <sub>1</sub> g dn n <sub>2</sub>                                                                             | 1,200<br>9,810<br>0,660<br>16,100                            | 145,49<br>m/s<br>m/s | $V = Q/(B \times Y)$ $Ew = \alpha \times Vn^2/2g + (dn - Y)$ $(w = Y/Ew) < 0.6$ $L_2 = 2.03 \times B \times (2.828 \times \sqrt{(\pi_2 - 0.4)(1 - 0.4w)} + 0.31 \text{ w} - 0.984 \text{ ar cos} \sqrt{(0.4/\pi, 1) + 0.065})$                                                                                                                                                                                          | 1,13 0,14 10,10                                         | tubería circual con caudal mínimo Velocidad transversal en la tubería rectangular con caudal mínimo  Cálculo de la energía especifica  Relación calado a energía especifica  Longitud requerida para el vertedero  Determinación de la velocidad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | m                  |
| 16<br>17<br>18                               | Velocidad con caudal máximo Coeficiente corrección energía cinetica Aceleración de la gravedad Altura del canal para Qmáximo Relación entre h1 y h2 (calado de ingreso y calado de salida)                                                                                                                                                                                                                  | α <sub>1</sub><br>g<br>dn                                                                                      | 1,200<br>9,810<br>0,660                                      | 145,49<br>m/s<br>m/s | $V = Q/(B \times Y)$ $Ew = \alpha \times Vn^2/2g + (dn - Y)$ $(w = Y/Ew) < 0.6$ $L_2 = 2.03 \times B \times (2.828 \times \sqrt{(n_2 - 0.4)(1 - 0.4w)} + (-0.4w) + (-0.4w)$                                                                                                                                                                                                                                             | 1,13<br>0,14                                            | tubería circual con caudal mínimo Velocidad transversal en la tubería rectangular con caudal mínimo  Cálculo de la energía especifica  Relación calado a energía especifica  Longitud requerida para el vertedero  Determinación de la velocidad en el extremo inferior del vertedro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | m                  |
| 16                                           | Velocidad con caudal máximo Coeficiente corrección energía cinetica Aceleración de la gravedad Altura del canal para Qmáximo Relación entre h1 y h2 (calado de ingreso y calado de salida) Coeficiente de corrección energía cinética                                                                                                                                                                       | α <sub>1</sub> g dn n <sub>2</sub>                                                                             | 1,200<br>9,810<br>0,660<br>16,100                            | 145,49<br>m/s<br>m/s | $V = Q/(B \times Y)$ $Ew = \alpha \times Vn^{2}/2g + (dn - Y)$ $(w = Y/Ew) < 0.6$ $L_{1} = 2.03 \times B \times (2.828 \times \sqrt{(n_{2} - 0.4)(1 - 0.4w)} + 0.31 \times -0.984 \text{ ar cos} \sqrt{(0.4/s_{1}) + 0.065})$ $V2 = ((2g/\sigma_{2}) (Ew - \sigma_{2}' \times Ew/(2 \times n_{2})))^{0.5}$                                                                                                              | 1,13  0,14  10,10  3,92                                 | tubería circual con caudal mínimo Velocidad transversal en la tubería rectangular con caudal mínimo  Cálculo de la energía especifica  Relación calado a energía específica  Longitud requerida para el vertedero  Determinación de la velocidad en el extremo inferior del vertedro  Altura del calado de agua en el                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | m<br>m<br>m/s      |
| 16<br>17<br>18                               | Velocidad con caudal máximo Coeficiente corrección energía cinetica Aceleración de la gravedad Altura del canal para Qmáximo Relación entre h1 y h2 (calado de ingreso y calado de salida) Coeficiente de corrección energía cinética                                                                                                                                                                       | α <sub>1</sub> g dn n <sub>2</sub>                                                                             | 1,200<br>9,810<br>0,660<br>16,100                            | 145,49<br>m/s<br>m/s | $V = Q/(B \times Y)$ $Ew = \alpha \times Vn^2/2g + (dn - Y)$ $(w = Y/Ew) < 0.6$ $L_2 = 2.03 \times B \times (2.828 \times \sqrt{(\pi_2 - 0.4)(1 - 0.4w)} + 0.31 \text{ w} - 0.984 \text{ ar cos} \sqrt{(0.4/\pi, 1) + 0.065})$                                                                                                                                                                                          | 1,13 0,14 10,10                                         | tubería circual con caudal mínimo Velocidad transversal en la tubería rectangular con caudal mínimo  Cálculo de la energía especifica  Relación calado a energía especifica  Longitud requerida para el vertedero  Determinación de la velocidad en el extremo inferior del vertedro  Altura del calado de agua en el vertedero al ingreso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | m                  |
| 16<br>17<br>18<br>19<br>20                   | Velocidad con caudal máximo Coeficiente corrección energía cinetica Aceleración de la gravedad Altura del canal para Qmáximo Relación entre h1 y h2 (calado de ingreso y calado de salida) Coeficiente de corrección energía cinética                                                                                                                                                                       | α <sub>1</sub> g dn n <sub>2</sub>                                                                             | 1,200<br>9,810<br>0,660<br>16,100                            | 145,49<br>m/s<br>m/s | $V = Q/(B \times Y)$ $Ew = \alpha \times Vn^{2}/2g + (dn - Y)$ $(w = Y/Ew) < 0.6$ $L_{1} = 2.03 \times B \times (2.828 \times \sqrt{(n_{2} - 0.4)(1 - 0.4w)} + 0.31 \times -0.984 \text{ ar cos} \sqrt{(0.4/s_{1}) + 0.065})$ $V2 = ((2g/\sigma_{2}) (Ew - \sigma_{2}' \times Ew/(2 \times n_{2})))^{0.5}$                                                                                                              | 1,13  0,14  10,10  3,92                                 | tubería circual con caudal mínimo Velocidad transversal en la tubería rectangular con caudal mínimo  Cálculo de la energía especifica  Relación calado a energía específica  Longitud requerida para el vertedero  Determinación de la velocidad en el extremo inferior del vertedro  Altura del calado de agua en el                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | m<br>m<br>m/s      |
| 16<br>17<br>18<br>19<br>20                   | Velocidad con caudal máximo Coeficiente corrección energía cinetica Aceleración de la gravedad Altura del canal para Qmáximo Relación entre h1 y h2 (calado de ingreso y calado de salida) Coeficiente de corrección energía cinética                                                                                                                                                                       | α <sub>1</sub> g dn n <sub>2</sub>                                                                             | 1,200<br>9,810<br>0,660<br>16,100                            | 145,49<br>m/s<br>m/s | $V = Q/(B \times Y)$ $Ew = \alpha \times Vn^{2}/2g + (dn - Y)$ $(w=Y/Ew) < 0.6$ $L_{2} = 2.03 \times B \times (2.828 \times \sqrt{(n_{2} - 0.4)(1 - 0.4w)} + 0.81w - 0.984 \text{ ar css.} \sqrt{(0.4/\pi, 1) + 0.065})$ $V2 = ((2g/\alpha_{2}) (Ew - \alpha_{2}' \times Ew/(2 \times n_{2})))^{0.5}$ $h1 = 0.5 \times Ew$                                                                                              | 1,13  0,14  10,10  3,92  0,56                           | tubería circual con caudal mínimo Velocidad transversal en la tubería rectangular con caudal mínimo  Cálculo de la energía especifica  Relación calado a energía especifica  Longitud requerida para el vertedero  Determinación de la velocidad en el extremo inferior del vertedro  Altura del calado de agua en el vertedero al ingreso  Altura del calado de agua en el                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m<br>m<br>m/s      |
| 16<br>17<br>18<br>19<br>20<br>21             | Velocidad con caudal máximo Coeficiente corrección energía cinetica Aceleración de la gravedad Altura del canal para Qmáximo Relación entre h1 y h2 (calado de ingreso y calado de salida) Coeficiente de corrección energía cinética                                                                                                                                                                       | α <sub>1</sub> g dn n <sub>2</sub>                                                                             | 1,200<br>9,810<br>0,660<br>16,100                            | 145,49<br>m/s<br>m/s | $V = Q/(B \times Y)$ $Ew = \alpha \times Vn^{2}/2g + (dn - Y)$ $(w=Y/Ew) < 0.6$ $L_{2} = 2.03 \times B \times (2.828 \times \sqrt{(n_{2} - 0.4)(1 - 0.4w)} + 0.81w - 0.984 \text{ ar css.} \sqrt{(0.4/\pi, 1) + 0.065})$ $V2 = ((2g/\alpha_{2}) (Ew - \alpha_{2}' \times Ew/(2 \times n_{2})))^{0.5}$ $h1 = 0.5 \times Ew$                                                                                              | 1,13  0,14  10,10  3,92  0,56                           | tubería circual con caudal mínimo Velocidad transversal en la tubería rectangular con caudal mínimo  Cálculo de la energía especifica  Relación calado a energía especifica  Longitud requerida para el vertedero  Determinación de la velocidad en el extremo inferior del vertedro  Altura del calado de agua en el vertedero a la salida                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m<br>m<br>m/s      |
| 16<br>17<br>18<br>19<br>20<br>21             | Velocidad con caudal máximo Coeficiente corrección energía cinetica Aceleración de la gravedad Altura del canal para Qmáximo Relación entre h1 y h2 (calado de ingreso y calado de salida) Coeficiente de corrección energía cinética                                                                                                                                                                       | α <sub>1</sub> g dn n <sub>2</sub> α <sub>2</sub> α <sub>2</sub> α <sub>2</sub> ·                              | 1,200<br>9,810<br>0,660<br>16,100<br>1,400<br>0,950          | 145,49<br>m/s<br>m/s | $V = Q/(B \times Y)$ $Ew = \alpha \times Vn^{2}/2g + (dn - Y)$ $\frac{(w = Y/Ew) < 0.6}{L_{2} = 2.03 \times B \times (2.828 \times \sqrt{(n_{2} - 0.4)(1 - 0.4w^{2})} + 0.31 w - 0.981 ar cos \sqrt{(0.4/\pi_{1})} + 0.065}$ $V2 = ((2g/q_{2}) (Ew - q_{2}' \times Ew/(2 \times n_{2})))^{0.5}$ $h1 = 0.5 \times Ew$ $h2 = h1/n_{2}$                                                                                    | 1,13  0,14  10,10  3,92  0,56  0,04  0,20               | tubería circual con caudal mínimo Velocidad transversal en la tubería rectangular con caudal mínimo  Cálculo de la energía especifica  Relación calado a energía especifica  Longitud requerida para el vertedero  Determinación de la velocidad en el extremo inferior del vertedro  Altura del calado de agua en el vertedero a la salida  Calado de agua a na el calado de agua en el                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | m<br>m<br>m/s      |
| 16<br>17<br>18<br>19<br>20<br>21<br>22<br>23 | Velocidad con caudal máximo Coeficiente corrección energía cinetica Aceleración de la gravedad Aflura del canal para Qmáximo Relación entre h1 y h2 (calado de ingreso y calado de salida) Coeficiente de corrección energía cinética Coeficiente de corrección energía presiones                                                                                                                           | α <sub>1</sub> g dn n <sub>2</sub>                                                                             | 1,200<br>9,810<br>0,660<br>16,100                            | 145,49<br>m/s<br>m/s | $V = Q/(B \times Y)$ $Ew = \alpha \times Vn^{2}/2g + (dn - Y)$ $\frac{(w = Y/Ew) < 0.6}{L_{2} = 2.03 \times B \times (2.828 \times \sqrt{(n_{2} - 0.4)(1 - 0.4w^{2})} + 0.31 w - 0.981 ar cos \sqrt{(0.4/\pi_{1})} + 0.065}$ $V2 = ((2g/q_{2}) (Ew - q_{2}' \times Ew/(2 \times n_{2})))^{0.5}$ $h1 = 0.5 \times Ew$ $h2 = h1/n_{2}$                                                                                    | 1,13  0,14  10,10  3,92  0,56  0,04                     | tubería circual con caudal mínimo Velocidad transversal en la tubería rectangular con caudal mínimo  Cálculo de la energía especifica  Relación calado a energía especifica  Longitud requerida para el vertedero  Determinación de la velocidad en el extremo inferior del vertedro  Altura del calado de agua en el vertedero a la salida Calado de agua a la salida del vertedero lateral Determinación del coeficiente K1 para determinación caudal                                                                                                                                                                                                                                                                                                                                                                                                    | m<br>m<br>m/s      |
| 16<br>17<br>18<br>19<br>20<br>21             | Velocidad con caudal máximo Coeficiente corrección energía cinetica Aceleración de la gravedad Altura del canal para Qmáximo Relación entre h1 y h2 (calado de ingreso y calado de salida) Coeficiente de corrección energía cinética Coeficiente de corrección energía presiones Relación calado a diámetro o ancho del                                                                                    | α <sub>1</sub> g dn n <sub>2</sub> α <sub>2</sub> α <sub>2</sub> α <sub>2</sub> ·                              | 1,200<br>9,810<br>0,660<br>16,100<br>1,400<br>0,950          | 145,49<br>m/s<br>m/s | $V = Q/(B \times Y)$ $Ew = \alpha \times Vn^{2}/2g + (dn - Y)$ $(w = Y/Ew) < 0.6$ $L_{2} = 2.03 \times B \times (2.828 \times \sqrt{(n_{3} - 0.4)(1 - 0.4 w)} + 0.31 w - 0.984 \text{ ar os } \sqrt{(0.4/\pi)} + 0.065)$ $V2 = ((2g/\alpha_{2}) (Ew - \alpha_{2}' \times Ew/(2 \times n_{2})))^{0.5}$ $h1 = 0.5 \times Ew$ $h2 = h1/n_{2}$ $d2 = Y + h2$ $K = f(d2/B)$                                                  | 1,13  0,14  10,10  3,92  0,56  0,04  0,20  0,05         | tubería circual con caudal mínimo Velocidad transversal en la tubería rectangular con caudal mínimo  Cálculo de la energía específica  Relación calado a energía específica  Longitud requerida para el vertedero  Determinación de la velocidad en el extremo inferior del vertedro  Altura del calado de agua en el vertedero al ingreso  Altura del calado de agua en el vertedero a la salida Calado de agua en el el vertedero la le salida del vertedero la del coeficiente K1 para determinación caudal  Caudal a trasnportar despues del                                                                                                                                                                                                                                                                                                           | m<br>m/s<br>m      |
| 16 17 18 19 20 21 22 23 24                   | Velocidad con caudal máximo Coeficiente corrección energía cinetica Aceleración de la gravedad Altura del canal para Qmáximo Relación entre h1 y h2 (calado de ingreso y calado de salida) Coeficiente de corrección energía cinética Coeficiente de corrección energía presiones  Relación calado a diámetro o ancho del colector                                                                          | α <sub>1</sub> g dn  n <sub>2</sub> α <sub>2</sub> α <sub>2</sub> α <sub>2</sub> α <sub>2</sub> α <sub>3</sub> | 1,200<br>9,810<br>0,660<br>16,100<br>1,400<br>0,950          | 145,49<br>m/s<br>m/s | $V = Q/(B \times Y)$ $Ew = \alpha \times Vn^{2}/2g + (dn - Y)$ $(w=Y/Ew) < 0.6$ $L_{2} = 2.03 \times B \times (2.828 \times \sqrt{(n_{2} - 0.4)(1 - 0.4w)} + 0.065)$ $V2 = ((2g/\alpha_{2}) (Ew - \alpha_{2}' \times Ew/(2 \times n_{2})))^{0.5}$ $h1 = 0.5 \times Ew$ $h2 = h1/n_{2}$ $d2 = Y + h2$                                                                                                                    | 1,13  0,14  10,10  3,92  0,56  0,04  0,20               | tubería circual con caudal mínimo Velocidad transversal en la tubería rectangular con caudal mínimo Cálculo de la energía especifica  Relación calado a energía especifica  Longitud requerida para el vertedero Determinación de la velocidad en el extremo inferior del vertedro Altura del calado de agua en el vertedero al ingreso Altura del calado de agua en el vertedero a la salida Calado de agua en el vertedero al teral Determinación cel a teral Determinación del coeficiente K1 para determinación caudal Caudal a trasnportar despues del vertedero lateral                                                                                                                                                                                                                                                                              | m<br>m/s<br>m      |
| 16 17 18 19 20 21 22 23                      | Velocidad con caudal máximo Coeficiente corrección energía cinetica Aceleración de la gravedad Altura del canal para Qmáximo Relación entre h1 y h2 (calado de ingreso y calado de salida) Coeficiente de corrección energía cinética Coeficiente de corrección energía presiones  Relación calado a diámetro o ancho del colector  Relación longitud ancho del canal                                       | α <sub>1</sub> g dn  n <sub>2</sub> α <sub>2</sub> α <sub>2</sub> α <sub>2</sub> ·                             | 1,200<br>9,810<br>0,660<br>16,100<br>1,400<br>0,950<br>0,280 | 145,49<br>m/s<br>m/s | $V = Q/(B \times Y)$ $Ew = \alpha \times Vn^{2}/2g + (dn - Y)$ $(w=Y/Ew) < 0.6$ $L_{1} = 2.03 \times B \times (2.828 \times \sqrt{(n_{3} - 0.4)(1 - 0.4w^{2})} + 0.31 \times -0.984 \text{ ar cos} \sqrt{\sqrt{(0.4/n_{3})} + 0.065^{2}}$ $V2 = ((2g/a_{2}) (Ew - a_{2}' \times Ew/(2 \times n_{2})))^{0.5}$ $h1 = 0.5 \times Ew$ $h2 = h1/n_{2}$ $d2 = Y + h2$ $K = f(d2/B)$ $Q = K \times (D^{8/3} \times i^{1/2})/n$ | 1,13  0,14  10,10  3,92  0,56  0,04  0,20  0,05  0,1917 | tubería circual con caudal mínimo Velocidad transversal en la tubería rectangular con caudal mínimo  Cálculo de la energía especifica  Relación calado a energía específica  Longitud requerida para el vertedero Determinación de la velocidad en el extremo inferior del vertedro Altura del calado de agua en el vertedero a la salida Calado de agua en el vertedero a la salida Calado de agua en el vertedero a la residia Calado de agua en el vertedero a la residia Calado de agua en el vertedero a la residia Calado de agua en el vertedero a la residia Calado de agua en el vertedero a la residia Calado de agua en el vertedero a la residia Calado de agua en el vertedero a la residia Determinación del coeficiente K1 para determinación caudal Caudal a transportar despues del vertedero lateral Valor a verificar en la tabla de la | m<br>m/s<br>m      |
| 16 17 18 19 20 21 22 23 24 25                | Velocidad con caudal máximo Coeficiente corrección energía cinetica Aceleración de la gravedad Altura del canal para Qmáximo  Relación entre h1 y h2 (calado de ingreso y calado de salida) Coeficiente de corrección energía cinética Coeficiente de corrección energía presiones  Relación calado a diámetro o ancho del colector  Relación longitud ancho del canal Relación calado a energía específica | α <sub>1</sub> 9 dn  n <sub>2</sub> α <sub>2</sub> α <sub>2</sub> α <sub>2</sub>                               | 1,200<br>9,810<br>0,660<br>16,100<br>1,400<br>0,950<br>0,280 | 145,49<br>m/s        | $V = Q/(B \times Y)$ $Ew = \alpha \times Vn^{2}/2g + (dn - Y)$ $(w = Y/Ew) < 0.6$ $L_{2} = 2.03 \times B \times (2.828 \times \sqrt{(n_{3} - 0.4)(1 - 0.4 w)} + 0.31 w - 0.984 \text{ ar os } \sqrt{(0.4/\pi)} + 0.065)$ $V2 = ((2g/\alpha_{2}) (Ew - \alpha_{2}' \times Ew/(2 \times n_{2})))^{0.5}$ $h1 = 0.5 \times Ew$ $h2 = h1/n_{2}$ $d2 = Y + h2$ $K = f(d2/B)$                                                  | 1,13  0,14  10,10  3,92  0,56  0,04  0,20  0,05         | tubería circual con caudal mínimo Velocidad transversal en la tubería rectangular con caudal mínimo  Cálculo de la energía especifica  Relación calado a energía especifica  Longitud requerida para el vertedero  Determinación de la velocidad en el extremo inferior del vertedro  Altura del calado de agua en el vertedero al la salida Calado de agua en el vertedero la teralida  Calado de agua en el vertedero la de coeficiente K1 para determinación caudal  Caudal a trasnportar despues del vertedero lateral  Valor a verificar en la tabla de la figura 5.16 pag 199 Metcalf y Eddy                                                                                                                                                                                                                                                         | m<br>m/s<br>m      |
| 16<br>17<br>18<br>19<br>20<br>21<br>22<br>23 | Velocidad con caudal máximo Coeficiente corrección energía cinetica Aceleración de la gravedad Altura del canal para Qmáximo Relación entre h1 y h2 (calado de ingreso y calado de salida) Coeficiente de corrección energía cinética Coeficiente de corrección energía presiones  Relación calado a diámetro o ancho del colector  Relación longitud ancho del canal                                       | α <sub>1</sub> g dn  n <sub>2</sub> α <sub>2</sub> α <sub>2</sub> α <sub>2</sub> ·                             | 1,200<br>9,810<br>0,660<br>16,100<br>1,400<br>0,950<br>0,280 | 145,49<br>m/s<br>m/s | $V = Q/(B \times Y)$ $Ew = \alpha \times Vn^{2}/2g + (dn - Y)$ $(w=Y/Ew) < 0.6$ $L_{1} = 2.03 \times B \times (2.828 \times \sqrt{(n_{3} - 0.4)(1 - 0.4w^{2})} + 0.31 \times -0.984 \text{ ar cos} \sqrt{\sqrt{(0.4/n_{3})} + 0.065^{2}}$ $V2 = ((2g/a_{2}) (Ew - a_{2}' \times Ew/(2 \times n_{2})))^{0.5}$ $h1 = 0.5 \times Ew$ $h2 = h1/n_{2}$ $d2 = Y + h2$ $K = f(d2/B)$ $Q = K \times (D^{8/3} \times i^{1/2})/n$ | 1,13  0,14  10,10  3,92  0,56  0,04  0,20  0,05  0,1917 | tubería circual con caudal mínimo Velocidad transversal en la tubería rectangular con caudal mínimo  Cálculo de la energía especifica  Relación calado a energía específica  Longitud requerida para el vertedero Determinación de la velocidad en el extremo inferior del vertedro Altura del calado de agua en el vertedero a la salida Calado de agua en el vertedero a la salida Calado de agua en el vertedero a la residia Calado de agua en el vertedero a la residia Calado de agua en el vertedero a la residia Calado de agua en el vertedero a la residia Calado de agua en el vertedero a la residia Calado de agua en el vertedero a la residia Calado de agua en el vertedero a la residia Determinación del coeficiente K1 para determinación caudal Caudal a transportar despues del vertedero lateral Valor a verificar en la tabla de la | m<br>m<br>m/s<br>m |

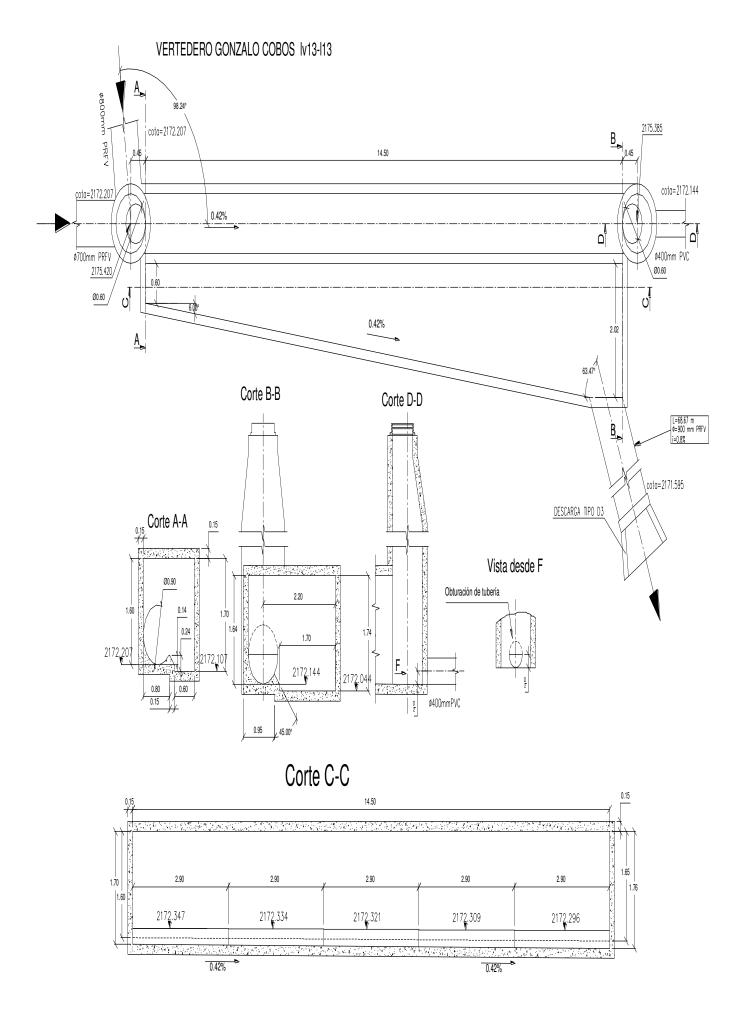

|                            |                                                                                                                                                      | PARA CANAL                         | ES CIRCUL      | ARES O R      | ECTANGULARES DOS TUBERIAS DE LL                                                             | EGADA                |                                                                                                                                                                                                                        |                   |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------------|---------------|---------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| PASO                       | DATOS                                                                                                                                                | SIMBOLO                            | VALOR          | UNIDAD        | CRITERIO                                                                                    | CALCULO              | RESULTADO                                                                                                                                                                                                              | UNIDAD            |
|                            | Rugosidad de la tubería o canal                                                                                                                      | n                                  | 0,009          |               |                                                                                             |                      |                                                                                                                                                                                                                        |                   |
| 27                         |                                                                                                                                                      |                                    |                |               |                                                                                             |                      | Relación calado a diámetro ó                                                                                                                                                                                           |                   |
| 20                         |                                                                                                                                                      |                                    |                |               | Y/B = f(K)                                                                                  | 0,44                 | ancho                                                                                                                                                                                                                  | m                 |
| 28                         |                                                                                                                                                      |                                    |                |               | Y <sub>2</sub> = (Y/B) x B                                                                  | 0,22                 | calado de agua en la tubería circular<br>ó rectangular con caudal mínimo                                                                                                                                               | m/o               |
| 29                         |                                                                                                                                                      |                                    |                |               | 1 <sub>2</sub> - (1/B) X B                                                                  | -0,01                | Desnivel a que se debe colocar la                                                                                                                                                                                      | m/s               |
| 20                         |                                                                                                                                                      |                                    |                |               | Δ = Y2 - Y                                                                                  | 0,06                 | t.sanitaria respescto a la t.principal                                                                                                                                                                                 |                   |
| 30                         | K para relación (d/D) <sub>max</sub> = 94%                                                                                                           | Kmax                               | 0,3353         |               |                                                                                             | 0,00                 | Caudal máximo a llevar en la tubería                                                                                                                                                                                   |                   |
|                            | ( = - /iliax = - /iliax                                                                                                                              |                                    | -,             |               | Q-max = Kmax x Ds <sup>8/3</sup> x i <sup>1/2</sup> / n                                     | 0,3664               | sanitaria                                                                                                                                                                                                              | m³/s              |
| 31                         | K1 para determinar área para máximo                                                                                                                  | K1                                 | 0,7662         |               |                                                                                             |                      | Velocidad con caudal máximo                                                                                                                                                                                            |                   |
|                            | caudal                                                                                                                                               |                                    |                |               | V-max-s = Q-max/(K1 x Ds <sup>2</sup> )                                                     | 1,91                 |                                                                                                                                                                                                                        | m/s               |
|                            | Cálculo con la ecuación de Babbit                                                                                                                    |                                    |                |               | T                                                                                           | 1                    |                                                                                                                                                                                                                        |                   |
| 32                         |                                                                                                                                                      |                                    |                |               | Ymax = 0,94 x Ds                                                                            | 0,47                 | Calado de agua a caudal máximo                                                                                                                                                                                         | m                 |
| 33                         |                                                                                                                                                      |                                    |                |               | 1111dx = 0,94 x DS                                                                          | 0,47                 | Calado de agua a la salida del                                                                                                                                                                                         | 1111              |
| 00                         |                                                                                                                                                      |                                    |                |               | h2 = Ymax - Y <sub>2</sub>                                                                  | 0,25                 | vertedero lateral.                                                                                                                                                                                                     | m                 |
| 34                         |                                                                                                                                                      |                                    |                |               | -                                                                                           |                      | Calado de agua al ingreso del                                                                                                                                                                                          |                   |
|                            |                                                                                                                                                      |                                    |                |               | h1 = H - Y <b>ó</b> h1 = 0,94 x D - Y                                                       | 0,497                | vertedero lateral.                                                                                                                                                                                                     | m                 |
| 35                         | Velocidad de aproximación con                                                                                                                        | Vmax                               | 3,21           | m/s           |                                                                                             |                      | Determinación de la longitud                                                                                                                                                                                           |                   |
|                            | caudal máximo                                                                                                                                        |                                    | <u> </u>       |               | $L = 7,55 \times Vmax \times d \times log(h1/h2)$                                           | 5,06                 | del vertedero lateral                                                                                                                                                                                                  | m                 |
| 36                         | sionamiento de la transición para giros de                                                                                                           |                                    |                |               | T                                                                                           | ı                    | I amaitud da la transisión                                                                                                                                                                                             | 1                 |
| 30                         | Diámetro o base tubería ingreso Diámetro o base tubería salida                                                                                       | B o D<br>Ds                        | 0,7<br>0,5     | m<br>m        | I = (B-Ds)/(tagθ)                                                                           | 1,9                  | Longitud de la transición                                                                                                                                                                                              | m                 |
|                            | Angulo de transición                                                                                                                                 | θ                                  | 6              | grados        | 1 = (B-D3)/(lag0)                                                                           | 1,3                  |                                                                                                                                                                                                                        | ""                |
| 37                         | Relación diámetro tubería versus radio de                                                                                                            |                                    |                | gradoo        |                                                                                             |                      | Radio de curvatura en la tubería                                                                                                                                                                                       |                   |
|                            | curvatura recomendado                                                                                                                                | r/Ds                               | 2              |               | r = 2 x Ds                                                                                  | 1                    |                                                                                                                                                                                                                        |                   |
| 38                         | Angulo entre el colector principal                                                                                                                   |                                    |                |               |                                                                                             |                      | Longitud de la curva                                                                                                                                                                                                   |                   |
|                            | y la tubería sanitaria                                                                                                                               | ω                                  | #¡REF!         | grados        | Ic = ω x (r + Ds/2)/180                                                                     |                      |                                                                                                                                                                                                                        | m                 |
| 39                         | Coeficiente de pérdida por cambio de                                                                                                                 |                                    | _              |               | 2.                                                                                          |                      | Pérdida de carga porcambio de                                                                                                                                                                                          |                   |
| 40                         | dirección según el ángulo de giro                                                                                                                    | р                                  | 0              |               | hf = p x V-max-s <sup>2</sup> /(2 x g)                                                      |                      | dirección en el interior del colector<br>Pendiente en el canal de transición                                                                                                                                           | m                 |
| 40                         |                                                                                                                                                      |                                    |                |               | $i = (hf + \Delta)/(I + Ic)$                                                                | 3,11%                | por cambio de dirección y desnivel                                                                                                                                                                                     | %                 |
|                            | VERTEDERO JUAN IGNACIO BORR                                                                                                                          | ERO It14 - in                      | 14; ALV 1      | 1             | 1 - (m · Δ)/(i · io)                                                                        | U, 11/0              | por sambio de dirección y desiliver                                                                                                                                                                                    | /0                |
| 1                          | Diámetro o ancho de la tubería UNO                                                                                                                   | DóB                                | 1,100          | m             |                                                                                             |                      |                                                                                                                                                                                                                        |                   |
|                            | Altura del canal recatangular                                                                                                                        | Н                                  | 0,000          | m             |                                                                                             |                      |                                                                                                                                                                                                                        |                   |
|                            | Pendiente de la tubería o canal UNO                                                                                                                  | i                                  | 0,004          | m/m           | Q-max1 = Kmax x D <sup>8/3</sup> x i <sup>1/2</sup> / n                                     | 3,19                 | Caudal máximo para canal                                                                                                                                                                                               |                   |
|                            | Rugosidad de la tubería o canal UNO                                                                                                                  | n                                  | 0,009          |               |                                                                                             |                      | circular                                                                                                                                                                                                               | m <sup>3</sup> /s |
|                            | K para relación (d/D) <sub>max</sub> = 94%                                                                                                           | Kmax                               | 0,3353         |               |                                                                                             |                      |                                                                                                                                                                                                                        |                   |
| 2                          | Diámetro o ancho de la tubería DOS                                                                                                                   | D ó B                              | 0,500          | m             |                                                                                             |                      |                                                                                                                                                                                                                        |                   |
|                            | Altura del canal recatangular Pendiente de la tubería o canal DOS                                                                                    | H<br>i                             | 0,000<br>0,004 | m<br>m/m      | Q-max2 = Kmax x D <sup>8/3</sup> x i <sup>1/2</sup> / n                                     | 0,37                 | Coudal máximo para conal                                                                                                                                                                                               |                   |
|                            | Rugosidad de la tubería o canal DOS                                                                                                                  | n                                  | 0,004          | 111/111       | Q-max2 = Kmax x D · x i / ii                                                                | 0,37                 | Caudal máximo para canal<br>circular                                                                                                                                                                                   | m <sup>3</sup> /s |
|                            | K para relación (d/D) <sub>max</sub> = 94%                                                                                                           | Kmax                               | 0,3353         |               |                                                                                             |                      | Circular                                                                                                                                                                                                               | 111 /5            |
| 3                          | Caudal pluvial a transportar las dos                                                                                                                 |                                    | .,             |               |                                                                                             |                      | Caudal máximo a transportar                                                                                                                                                                                            |                   |
|                            | tuberías para un período de 5 años                                                                                                                   | Qmax-d                             | 3.077,16       | It/s          | Qmax = Qmax1 + Qmax2                                                                        | 3,55                 | las dos tuberías                                                                                                                                                                                                       | m <sup>3</sup> /s |
| 4                          | Diámetro o ancho de la tubería                                                                                                                       | DóB                                | 1,100          | m             |                                                                                             |                      |                                                                                                                                                                                                                        |                   |
|                            | Pendiente de la tubería o canal                                                                                                                      | i                                  | 0,005          | m/m           | Q-max = Kmax x D <sup>8/3</sup> x i <sup>1/2</sup> / n                                      | 3,40                 | Caudal máximo para canal                                                                                                                                                                                               |                   |
|                            | Rugosidad de la tubería o canal                                                                                                                      | n                                  | 0,009          |               |                                                                                             |                      | circular                                                                                                                                                                                                               | m³/s              |
| 5                          | K para relación (d/D) <sub>max</sub> = 94%                                                                                                           | Kmax                               | 0,3353         |               |                                                                                             | 0,93                 | Area de secsión tronsceres                                                                                                                                                                                             |                   |
| э                          | K1 para calcular área para Qmax                                                                                                                      | K1                                 | 0,7662         |               | Am = K1 x D <sup>2</sup>                                                                    | 0,93                 | Area de sección transversal<br>para caudal máximo tub. Circular                                                                                                                                                        | m <sup>2</sup>    |
|                            |                                                                                                                                                      |                                    |                |               | AIII = KTX B                                                                                |                      | Velocidad transversal                                                                                                                                                                                                  | - ""              |
|                            |                                                                                                                                                      |                                    |                |               | Vmax = Qmax/A                                                                               | 3,66                 | con caudal máximo                                                                                                                                                                                                      | m/s               |
| 6                          | Altura del canal                                                                                                                                     | Н                                  | 0,000          | m             |                                                                                             |                      | Determinación de Kmax para                                                                                                                                                                                             |                   |
|                            | Relación H/B                                                                                                                                         | H/B                                | 0,000          |               | Kmax = f(H/B)                                                                               | canal circular       | canales rectangulares                                                                                                                                                                                                  |                   |
| 7                          |                                                                                                                                                      |                                    |                |               | 9/2 1/2                                                                                     |                      | Caudal máximo a transportar                                                                                                                                                                                            | 2                 |
| 8                          |                                                                                                                                                      |                                    |                |               | Q-max = Kmax x B <sup>8/3</sup> x i <sup>1/2</sup> / n                                      | canal circular       | para tubería rectangular<br>Velocidad transversal                                                                                                                                                                      | m <sup>3</sup> /s |
| ٥                          |                                                                                                                                                      |                                    |                |               | Vmax = Q-max/(B x H)                                                                        | canal circular       | con caudal máximo                                                                                                                                                                                                      | m/s               |
| 9                          | Caudal Sanitario Medio                                                                                                                               | Qs                                 | 62,480         | It/s          | VIIIdX = Q-IIIdX(B X II)                                                                    | cariai circaiai      | Caudal máximo a transportar en                                                                                                                                                                                         | 111/3             |
| -                          | Relación de dilución entre 2,5 y 5                                                                                                                   | R                                  | 2,000          |               | QS = R x Qs/1000                                                                            | 0,125                | tubería sanitaria                                                                                                                                                                                                      | m <sup>3</sup> /s |
| 10                         |                                                                                                                                                      |                                    |                |               |                                                                                             |                      | Relación par determinación de                                                                                                                                                                                          |                   |
|                            |                                                                                                                                                      |                                    | 3,178          |               | $K = QS \times n/(D^{8/3} \times i^{1/2})$                                                  | 0,0123               | calado de agua en la tubería                                                                                                                                                                                           |                   |
| 11                         |                                                                                                                                                      |                                    |                |               |                                                                                             |                      | Relación calado a diámetro ó                                                                                                                                                                                           |                   |
| 40                         |                                                                                                                                                      |                                    |                |               | Y/B = f(K)                                                                                  | 0,13                 | ancho                                                                                                                                                                                                                  |                   |
| 12                         |                                                                                                                                                      |                                    |                |               | Y = (Y/B) x B                                                                               | 0.44                 | calado de agua en la tubería circular<br>ó rectangular con caudal mínimo                                                                                                                                               | m                 |
| 13                         | Determinación del coeficiente K1                                                                                                                     |                                    |                |               | 1 - (1/0) x 0                                                                               | 0,14                 | Area de sección transversal                                                                                                                                                                                            |                   |
|                            | 2.2.2.2.3.0.0.0.0                                                                                                                                    | K1 = f(Y/B)                        | 0,06           |               | $A = K1 \times D^2$                                                                         | 0,0726               | en tubería circual                                                                                                                                                                                                     | m <sup>2</sup>    |
| 14                         |                                                                                                                                                      | ` ′                                |                |               |                                                                                             |                      | Velocidad transversal en la                                                                                                                                                                                            |                   |
|                            |                                                                                                                                                      |                                    |                |               | V = Q/A                                                                                     | 1,72                 | tubería circual con caudal mínimo                                                                                                                                                                                      | <u> </u>          |
| 15                         |                                                                                                                                                      |                                    |                |               |                                                                                             |                      | Velocidad transversal en la tubería                                                                                                                                                                                    |                   |
|                            | Official configuration in the                                                                                                                        |                                    | <u> </u>       | 2878,56       | V = Q/(B x Y)                                                                               | canal circular       | rectangular con caudal mínimo                                                                                                                                                                                          | m                 |
| 16                         | Cálculo con la ecuación de Ackers  Velocidad con caudal máximo                                                                                       | Vn                                 | 3,664          | 136,12<br>m/s | T                                                                                           |                      | Cálculo de la energía específica                                                                                                                                                                                       |                   |
| 10                         | Coeficiente corrección energía cinetica                                                                                                              | α <sub>1</sub>                     | 1,200          | 111/5         | $Ew = \alpha \times Vn^2/2q + (dn - Y)$                                                     |                      | Gardaro de la energia especifica                                                                                                                                                                                       |                   |
|                            | Aceleración de la gravedad                                                                                                                           | g                                  | 9,810          | m/s           | 2 4. VII /2g · (UII - I )                                                                   | 1,71                 |                                                                                                                                                                                                                        | m                 |
|                            | Altura del canal para Qmáximo                                                                                                                        | dn                                 | 1,030          | m             | 1                                                                                           | <u> </u>             |                                                                                                                                                                                                                        |                   |
| 17                         |                                                                                                                                                      |                                    |                |               |                                                                                             |                      | Relación calado a energía                                                                                                                                                                                              |                   |
|                            |                                                                                                                                                      |                                    | ,              |               | (w=Y/Ew) < 0,6                                                                              | 0,08                 | específica                                                                                                                                                                                                             |                   |
|                            | Relación entre h1 y h2 (calado de ingreso                                                                                                            | n <sub>2</sub>                     | 19,000         |               | $L_2 = 2.03 \times B \times (2.828 \times \sqrt{(n_2 - 0.4)(1 - 0.4 w)} +$                  | 40.40                | Longitud requerida para el                                                                                                                                                                                             |                   |
| 18                         |                                                                                                                                                      |                                    |                | -             | $+ 0.31 \text{ w} - 0.984 \text{ ar } \cos \sqrt{(0.4/n,)} + 0.065$                         | 18,40                | vertedero                                                                                                                                                                                                              | m                 |
|                            | y calado de salida)                                                                                                                                  | ~                                  | 1 400          |               |                                                                                             | 4,83                 | Determinación de la velocidad                                                                                                                                                                                          | m/o               |
| 19                         | y calado de salida)  Coeficiente de corrección energía cinética                                                                                      | α <sub>2</sub>                     | 1,400          |               | \/2 = ((2a/a_) /Em ~ ' v E//2 = \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                           |                      |                                                                                                                                                                                                                        | m/s               |
| 19                         | y calado de salida)                                                                                                                                  | α <sub>2</sub><br>α <sub>2</sub> ` | 1,400<br>0,950 |               | $V2 = ((2g/\alpha_2) (Ew - \alpha_2' \times Ew/(2 \times n_2)))^{0.5}$                      | 4,03                 | en el extremo inferior del vertedro  Altura del calado de agua en el                                                                                                                                                   |                   |
|                            | y calado de salida)  Coeficiente de corrección energía cinética                                                                                      |                                    |                |               |                                                                                             |                      | Altura del calado de agua en el                                                                                                                                                                                        | m                 |
| 19                         | y calado de salida)  Coeficiente de corrección energía cinética                                                                                      |                                    |                |               | $V2 = ((2g/\alpha_2) (Ew - \alpha_2' \times Ew/(2 \times n_2)))^{0.5}$ $h1 = 0.5 \times Ew$ | 0,85                 |                                                                                                                                                                                                                        | m                 |
| 19                         | y calado de salida)  Coeficiente de corrección energía cinética                                                                                      |                                    |                |               |                                                                                             |                      | Altura del calado de agua en el<br>vertedero al ingreso                                                                                                                                                                | m<br>m            |
| 19                         | y calado de salida)  Coeficiente de corrección energía cinética                                                                                      |                                    |                |               | h1 = 0,5 x Ew<br>h2 = h1/n <sub>2</sub>                                                     | 0,85                 | Altura del calado de agua en el<br>vertedero al ingreso<br>Altura del calado de agua en el<br>vertedero a la salida<br>Calado de agua a la salida                                                                      |                   |
| 19<br>20<br>21<br>22       | y calado de salida)  Coeficiente de corrección energía cinética  Coeficiente de corrección energía presiones                                         |                                    |                |               | h1 = 0,5 x Ew                                                                               | 0,85                 | Altura del calado de agua en el vertedero al ingreso Altura del calado de agua en el vertedero a la salida Calado de agua a la salida del vertedero lateral                                                            |                   |
| 19<br>20<br>21             | y calado de salida)  Coeficiente de corrección energía cinética  Coeficiente de corrección energía presiones  Relación calado a diámetro o ancho del | α <sub>2</sub> `                   | 0,950          |               | $h1 = 0.5 \times Ew$ $h2 = h1/n_2$ $d2 = Y + h2$                                            | 0,85<br>0,04<br>0,19 | Altura del calado de agua en el vertedero al ingreso Altura del calado de agua en el vertedero a la salida Calado de agua a la salida del vertedero lateral Determinación del coeficiente                              | m                 |
| 19<br>20<br>21<br>22<br>23 | y calado de salida)  Coeficiente de corrección energía cinética  Coeficiente de corrección energía presiones                                         |                                    |                |               | h1 = 0,5 x Ew<br>h2 = h1/n <sub>2</sub>                                                     | 0,85                 | Altura del calado de agua en el vertedero al ingreso Altura del calado de agua en el vertedero a la salida Calado de agua a la salida del vertedero lateral Determinación del coeficiente K1 para determinación caudal | m                 |
| 19<br>20<br>21<br>22       | y calado de salida)  Coeficiente de corrección energía cinética  Coeficiente de corrección energía presiones  Relación calado a diámetro o ancho del | α <sub>2</sub> `                   | 0,950          |               | $h1 = 0.5 \times Ew$ $h2 = h1/n_2$ $d2 = Y + h2$                                            | 0,85<br>0,04<br>0,19 | Altura del calado de agua en el vertedero al ingreso Altura del calado de agua en el vertedero a la salida Calado de agua a la salida del vertedero lateral Determinación del coeficiente                              | m                 |

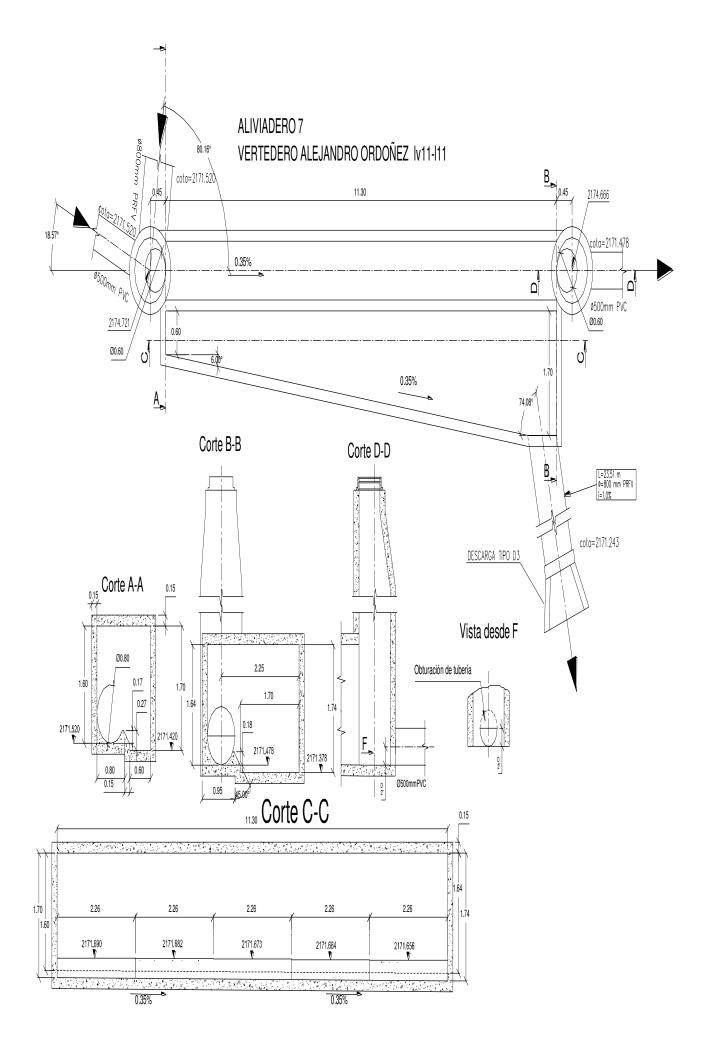

| 1400 |                                                                               |                   |                 |                   | ECTANGULARES DOS TUBERIAS DE LL                                            |                | DECLUITATE C                                                             | Luses :          |
|------|-------------------------------------------------------------------------------|-------------------|-----------------|-------------------|----------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------|------------------|
| PASO | DATOS                                                                         | SIMBOLO           | VALOR           | UNIDAD            | CRITERIO                                                                   | CALCULO        | RESULTADO                                                                | UNIDA            |
| 26   | Relación calado a energía específica  Diámetro de la tubería para Q sanitario | W<br>Ds           | 0,0837<br>0,500 | m                 | n2 = f(L/B;w)                                                              | 16,00          | figura 5.16 pag 199 Metcalf y Eddy<br>Relación par determinación de      |                  |
| 20   | Caudal Sanitario máximo                                                       | QS                | 0,300           | m <sup>3</sup> /s | K = QS x n/(Ds <sup>8/3</sup> x i <sup>1/2</sup> )                         | 0,1143         | calado de agua en la tubería                                             |                  |
|      | Pendiente de la tubería o canal                                               | i                 | 0,004           | m/m               | K - QO X III (BS X I )                                                     | -,             |                                                                          |                  |
|      | Rugosidad de la tubería o canal                                               | n                 | 0,009           |                   |                                                                            |                |                                                                          |                  |
| 27   |                                                                               |                   |                 |                   |                                                                            |                | Relación calado a diámetro ó                                             |                  |
| 00   |                                                                               |                   |                 |                   | Y/B = f(K)                                                                 | 0,41           | ancho                                                                    | m                |
| 28   |                                                                               |                   |                 |                   | Y <sub>2</sub> = (Y/B) x B                                                 | 0,21           | calado de agua en la tubería circular<br>ó rectangular con caudal mínimo | m/s              |
| 29   |                                                                               |                   |                 |                   | 12 - (1/8) x 8                                                             | -0,03          | Desnivel a que se debe colocar la                                        | 111/3            |
|      |                                                                               |                   |                 |                   | Δ = Y2 - Y                                                                 | 0,06           | t.sanitaria respescto a la t.principal                                   |                  |
| 30   | K para relación (d/D) <sub>max</sub> = 94%                                    | Kmax              | 0,3353          |                   |                                                                            | -,             | Caudal máximo a llevar en la tubería                                     | a                |
|      |                                                                               |                   |                 |                   | Q-max = Kmax x Ds <sup>8/3</sup> x i <sup>1/2</sup> / n                    | 0,3664         | sanitaria                                                                | m <sup>3</sup> / |
| 31   | K1 para determinar área para máximo                                           | K1                | 0,7662          |                   |                                                                            |                | Velocidad con caudal máximo                                              |                  |
|      | caudal Cálculo con la ecuación de Babbit                                      |                   |                 |                   | V-max-s = Q-max/(K1 x Ds <sup>2</sup> )                                    | 1,91           |                                                                          | m/               |
| 32   | Calculo con la ecuación de Babbit                                             |                   |                 | I                 |                                                                            | I              | Calado de agua a caudal máximo                                           |                  |
| 02   |                                                                               |                   |                 |                   | Ymax = 0,94 x Ds                                                           | 0,47           | calado do agua a cadada maximo                                           | m                |
| 33   |                                                                               |                   |                 |                   |                                                                            |                | Calado de agua a la salida del                                           |                  |
|      |                                                                               |                   |                 |                   | h2 = Ymax - Y <sub>2</sub>                                                 | 0,265          | vertedero lateral.                                                       | m                |
| 34   |                                                                               |                   |                 |                   | h4 II V ( h4 004                                                           | 0.004          | Calado de agua al ingreso del                                            |                  |
| 35   | Velocidad de aproximación con                                                 | Vmax              | 3,66            | m/s               | h1 = H - Y <b>ó</b> h1 = 0,94 x D - Y                                      | 0,891          | vertedero lateral.  Determinación de la longitud                         | m                |
| 55   | caudal máximo                                                                 | VIIIdA            | 3,00            | 111/3             | L = 7,55 x Vmax x d x log(h1/h2)                                           | 16,01          | del vertedero lateral                                                    | m                |
| mens | ionamiento de la transición para giros de l                                   | a tubería sanitar | ia              |                   | ,                                                                          | 1              |                                                                          |                  |
| 36   | Diámetro o base tubería ingreso                                               | BoD               | 1,1             | m                 |                                                                            |                | Longitud de la transición                                                |                  |
|      | Diámetro o base tubería salida                                                | Ds                | 0,5             | m                 | I = (B-Ds)/(tagθ)                                                          | 5,7            |                                                                          | m                |
| 0.7  | Angulo de transición                                                          | θ                 | 6               | grados            |                                                                            |                | Dadia da sucretora en la telescía                                        |                  |
| 37   | Relación diámetro tubería versus radio de<br>curvatura recomendado            | r/De              | 2               |                   | r = 2 x Ds                                                                 | 1              | Radio de curvatura en la tubería                                         |                  |
| 38   | Angulo entre el colector principal                                            | r/Ds              |                 |                   | 1 - 2 X US                                                                 | <u>'</u>       | Longitud de la curva                                                     | t -              |
|      | y la tubería sanitaria                                                        | ω                 | 0               | grados            | $Ic = \omega \times (r + Ds/2)/180$                                        | 0              |                                                                          | m                |
| 39   | Coeficiente de pérdida por cambio de                                          |                   |                 |                   | _                                                                          |                | Pérdida de carga porcambio de                                            |                  |
|      | dirección según el ángulo de giro                                             | р                 | 0               |                   | $hf = p \times V-max-s^2/(2 \times g)$                                     | 0,000          | dirección en el interior del colector                                    | m                |
| 40   |                                                                               |                   |                 |                   | 1 (left a A)((left a)                                                      | 4.000/         | Pendiente en el canal de transición                                      | 0/               |
|      | VERTEDERO ANTONIO TAPIA in11                                                  | - in10; ALV       | / 12            |                   | $i = (hf + \Delta)/(I + Ic)$                                               | 1,09%          | por cambio de dirección y desnivel                                       | %                |
| 1    | Diámetro o ancho de la tubería UNO                                            | DóB               | 0,700           | m                 |                                                                            | l              |                                                                          |                  |
| •    | Altura del canal recatangular                                                 | Н                 | 0,000           | m                 |                                                                            |                |                                                                          |                  |
|      | Pendiente de la tubería o canal UNO                                           | i                 | 0,010           | m/m               | Q-max1 = Kmax x D <sup>8/3</sup> x i <sup>1/2</sup> / n                    | 1,43           | Caudal máximo para canal                                                 |                  |
|      | Rugosidad de la tubería o canal UNO                                           | n                 | 0,009           |                   |                                                                            |                | circular                                                                 | m <sup>3</sup> / |
|      | K para relación (d/D) <sub>max</sub> = 94%                                    | Kmax              | 0,3353          |                   |                                                                            |                |                                                                          |                  |
| 2    | Diámetro o ancho de la tubería DOS  Altura del canal recatangular             | D 6 B             | 0,700<br>0,000  | m<br>m            |                                                                            |                |                                                                          |                  |
|      | Pendiente de la tubería o canal DOS                                           | ï                 | 0,000           | m/m               | Q-max2 = Kmax x D <sup>8/3</sup> x i <sup>1/2</sup> / n                    | 0,91           | Caudal máximo para canal                                                 |                  |
|      | Rugosidad de la tubería o canal DOS                                           | n                 | 0,009           |                   | Q-IIIdAZ = INIIdA X D X I 7 II                                             | 0,0 .          | circular                                                                 | m <sup>3</sup> / |
|      | K para relación (d/D) <sub>max</sub> = 94%                                    | Kmax              | 0,3353          |                   |                                                                            |                |                                                                          |                  |
| 3    | Caudal pluvial a transportar las dos                                          |                   |                 |                   |                                                                            |                | Caudal máximo a transportar                                              |                  |
|      | tuberías para un período de 5 años                                            | Qmax-d            | 1.780,00        | lt/s              | Qmax = Qmax1 + Qmax2                                                       | 2,34           | las dos tuberías                                                         | m <sup>3</sup> / |
| 4    | Diámetro o ancho de la tubería  Pendiente de la tubería o canal               | D ó B             | 0,900<br>0,005  | m<br>m/m          | 58/3 1/2                                                                   | 4.00           | 0                                                                        |                  |
|      | Rugosidad de la tubería o canal                                               | i<br>n            | 0,009           | m/m               | Q-max = Kmax x D <sup>8/3</sup> x i <sup>1/2</sup> / n                     | 1,89           | Caudal máximo para canal<br>circular                                     | m <sup>3</sup>   |
|      | K para relación (d/D) <sub>max</sub> = 94%                                    | Kmax              | 0,3353          |                   |                                                                            |                | Gredian                                                                  | 1111             |
| 5    | K1 para calcular área para Qmax                                               | K1                | 0,7662          |                   |                                                                            | 0,62           | Area de sección transversal                                              |                  |
|      |                                                                               |                   |                 |                   | Am = K1 x D <sup>2</sup>                                                   |                | para caudal máximo tub. Circular                                         | m²               |
|      |                                                                               |                   |                 |                   |                                                                            |                | Velocidad transversal                                                    |                  |
| 6    | Altura del canal                                                              | Н                 | 0,000           | m                 | Vmax = Qmax/A                                                              | 3,04           | con caudal máximo Determinación de Kmax para                             | m/s              |
| O    | Relación H/B                                                                  | H/B               | 0,000           | - 111             | Kmax = f(H/B)                                                              | canal circular | canales rectangulares                                                    |                  |
| 7    |                                                                               |                   | 2,222           |                   |                                                                            |                | Caudal máximo a transportar                                              |                  |
|      |                                                                               |                   |                 |                   | Q-max = Kmax x $B^{8/3}$ x $i^{1/2}/n$                                     | canal circular | para tubería rectangular                                                 | m <sup>3</sup> / |
| 8    |                                                                               |                   |                 |                   |                                                                            |                | Velocidad transversal                                                    |                  |
| •    | Country Constants Madia                                                       | 0.                | 60 500          | 14/0              | Vmax = Q-max/(B x H)                                                       | canal circular | con caudal máximo                                                        | m/s              |
| 9    | Caudal Sanitario Medio Relación de dilución entre 2,5 y 5                     | Qs<br>R           | 68,500<br>3,000 | It/s              | QS = R x Qs/1000                                                           | 0,206          | Caudal máximo a transportar en<br>tubería sanitaria                      | m <sup>3</sup> / |
| 10   | relation as unution sittle 2,5 y 5                                            | 11                | 3,000           | 1                 | Q0 = 1\ \(\lambda\) \(\lambda\) (000                                       | 3,200          | Relación par determinación de                                            | 111 /            |
| _    |                                                                               |                   | <u> </u>        |                   | $K = QS \times n/(D^{8/3} \times i^{1/2})$                                 | 0,0365         | calado de agua en la tubería                                             | L                |
| 11   |                                                                               |                   |                 |                   |                                                                            |                | Relación calado a diámetro ó                                             |                  |
|      |                                                                               |                   |                 |                   | Y/B = f(K)                                                                 | 0,23           | ancho                                                                    | 1                |
| 12   |                                                                               |                   |                 |                   | V = 0//D) = D                                                              | 0.04           | calado de agua en la tubería circular                                    |                  |
| 13   | Determinación del coeficiente K1                                              |                   |                 |                   | Y = (Y/B) x B                                                              | 0,21           | ó rectangular con caudal mínimo  Area de sección transversal             | m                |
| 13   | Determination del coefficiente N I                                            | K1 = f(Y/B)       | 0,14            |                   | $A = K1 \times D^2$                                                        | 0,1105         | en tubería circual                                                       | m²               |
| 14   |                                                                               | .,.,,,            | -,              |                   | N-MIAD                                                                     | .,             | Velocidad transversal en la                                              | T '''            |
|      |                                                                               |                   |                 |                   | V = Q/A                                                                    | 1,86           | tubería circual con caudal mínimo                                        |                  |
| 15   |                                                                               |                   |                 |                   |                                                                            |                | Velocidad transversal en la tubería                                      |                  |
|      | Cálculo con la correction de Astrono                                          |                   | l               | 1520,3            | V = Q/(B x Y)                                                              | canal circular | rectangular con caudal mínimo                                            | m                |
| 16   | Cálculo con la ecuación de Ackers  Velocidad con caudal máximo                | Vn                | 3,040           | 191,2<br>m/s      |                                                                            |                | Cálculo de la energía específica                                         | 1                |
|      | Coeficiente corrección energía cinetica                                       | α <sub>1</sub>    | 1,200           | 111/3             | $Ew = \alpha \times Vn^2/2g + (dn - Y)$                                    |                | _ around do la cricigia especifica                                       |                  |
|      | Aceleración de la gravedad                                                    | g g               | 9,810           | m/s               | L u. x vii /2g · (uii - 1)                                                 | 1,21           |                                                                          | m                |
|      | Altura del canal para Qmáximo                                                 | dn                | 0,850           | m                 |                                                                            | <u> </u>       | <u> </u>                                                                 | L                |
| 17   |                                                                               |                   |                 |                   |                                                                            |                | Relación calado a energía                                                |                  |
|      |                                                                               |                   |                 |                   | (w=Y/Ew) < 0,6                                                             | 0,17           | específica                                                               | 1                |
| 18   | Relación entre h1 y h2 (calado de ingreso                                     | $n_2$             | 18,100          |                   | $L_2 = 2.03 \times B \times (2.828 \times \sqrt{(n_2 - 0.4)(1 - 0.4 w)} +$ | 40.00          | Longitud requerida para el                                               |                  |
| 10   | y calado de salida)                                                           |                   | 4.400           |                   | $+ 0.31 \text{ w} - 0.984 \text{ ar cos } \sqrt{(0.4/n, ) + 0.065}$        | 13,90          | vertedero                                                                | n                |
| 19   | Coeficiente de corrección energía presiones                                   | α2                | 1,400           | 1                 | V2 = (/2g/g ) (5 = / 5/2                                                   | 4.00           | Determinación de la velocidad                                            |                  |
| 20   | Coeficiente de corrección energía presiones                                   | α <sub>2</sub> `  | 0,950           | -                 | V2 = $((2g/\alpha_2) (Ew - \alpha_2' x Ew/(2 x n_2)))^{0.5}$               | 4,06           | en el extremo inferior del vertedro  Altura del calado de agua en el     | m                |
| 20   |                                                                               |                   |                 |                   | h1 = 0,5 x Ew                                                              | 0,60           | vertedero al ingreso                                                     | r                |
|      |                                                                               |                   | 166,750         |                   | 111 - 0,5 A EW                                                             | 0,00           | Altura del calado de agua en el                                          |                  |
| 21   |                                                                               |                   | 1               | 1                 | $h2 = h1/n_2$                                                              | 0,03           | vertedero a la salida                                                    | n                |
| 21   |                                                                               |                   |                 |                   |                                                                            |                |                                                                          |                  |
| 21   |                                                                               |                   |                 |                   |                                                                            |                | Calado de agua a la salida                                               |                  |

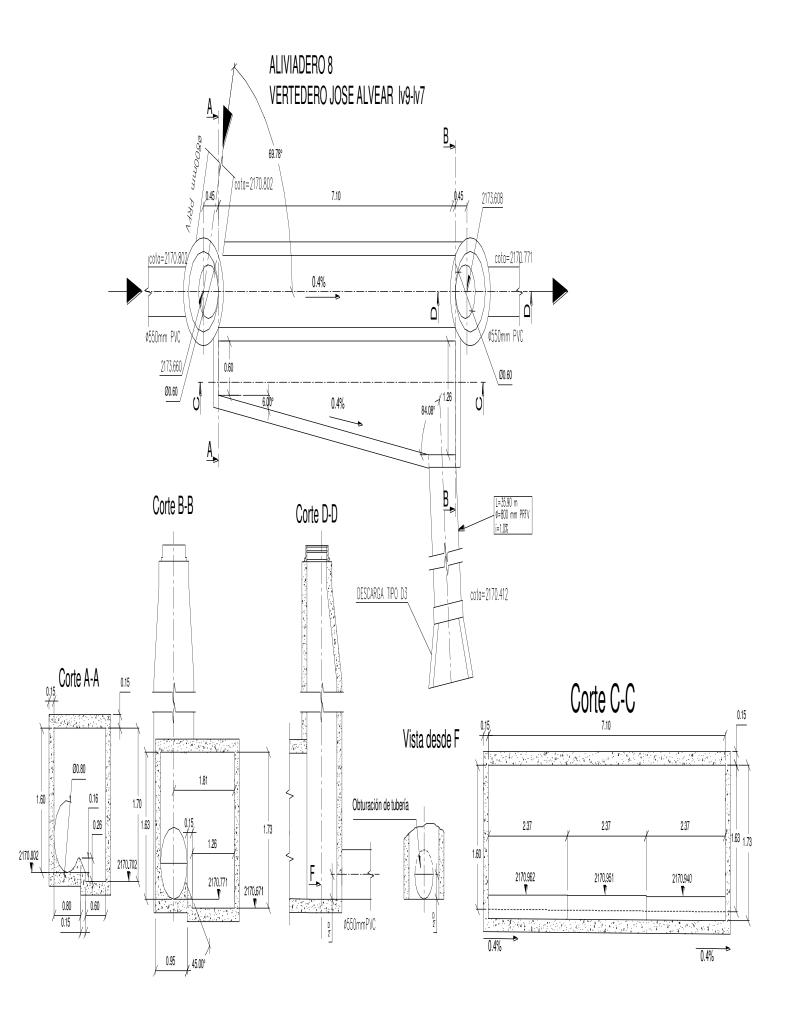

|          |                                             | PARA CANAL       | ES CIRCUL | ARES O RE         | CTANGULARES DOS TUBERIAS DE                      | LLEGADA |                                        |                   |
|----------|---------------------------------------------|------------------|-----------|-------------------|--------------------------------------------------|---------|----------------------------------------|-------------------|
| PASO     | DATOS                                       | SIMBOLO          | VALOR     | UNIDAD            | CRITERIO                                         | CALCULO | RESULTADO                              | UNIDAD            |
|          | colector                                    | d2/B             | 0,267     |                   | K = f(d2/B)                                      | 0,05    | K1 para determinación caudal           |                   |
| 24       |                                             |                  |           |                   |                                                  |         | Caudal a trasnportar despues del       |                   |
|          |                                             |                  |           |                   | $Q = K \times (D^{8/3} \times i^{1/2})/n$        | 0,2597  | vertedero lateral                      | m <sup>3</sup> /s |
| 25       | Relación longitud ancho del canal           | L/B              | 15,44     |                   |                                                  |         | Valor a verificar en la tabla de la    |                   |
|          | Relación calado a energía específica        | w                | 0,1713    |                   | n2 = f(L/B;w)                                    | 16,00   | figura 5.16 pag 199 Metcalf y Eddy     |                   |
| 26       | Diámetro de la tubería para Q sanitario     | Ds               | 0,500     | m                 | $K = QS \times n/(Ds^{8/3} \times i^{1/2})$      |         | Relación par determinación de          |                   |
|          | Caudal Sanitario máximo                     | QS               | 0,206     | m <sup>3</sup> /s |                                                  | 0,2089  | calado de agua en la tubería           |                   |
|          | Pendiente de la tubería o canal             | i                | 0,004     | m/m               |                                                  |         |                                        |                   |
|          | Rugosidad de la tubería o canal             | n                | 0,010     |                   |                                                  |         |                                        |                   |
| 27       |                                             |                  |           |                   |                                                  |         | Relación calado a diámetro ó           |                   |
|          |                                             |                  |           |                   | Y/B = f(K)                                       | 0,59    | ancho                                  | m                 |
| 28       |                                             |                  |           |                   |                                                  |         | calado de agua en la tubería circular  | 1                 |
|          |                                             |                  |           |                   | $Y_2 = (Y/B) \times B$                           | 0,30    | ó rectangular con caudal mínimo        | m/s               |
| 29       |                                             |                  |           |                   |                                                  | 0,03    | Desnivel a que se debe colocar la      |                   |
|          |                                             |                  |           |                   | Δ = Y2 - Y                                       | 0.09    | t.sanitaria respescto a la t.principal |                   |
| 30       | K para relación (d/D) <sub>max</sub> = 94%  | Kmax             | 0.3353    |                   |                                                  | -,      | Caudal máximo a llevar en la tubería   | 1                 |
|          | · · · · · · · · · · · · · · · · · · ·       | Turida           | 0,0000    |                   | Q-max = Kmax x Ds <sup>8/3</sup> x $i^{1/2}$ / n | 0,3298  | sanitaria                              | m <sup>3</sup> /s |
| 31       | K1 para determinar área para máximo         | K1               | 0.7662    | t t               | Q-IIIAX = IXIIIAX X D3 X1 711                    | 0,0200  | Velocidad con caudal máximo            | 111 /3            |
|          | caudal                                      |                  | 0,7002    |                   | V-max-s = Q-max/(K1 x Ds <sup>2</sup> )          | 1.72    | V Olociada Com Caadai Maximo           | m/s               |
|          | Cálculo con la ecuación de Babbit           |                  | 1         |                   | V-IIIAX-5 = Q-IIIAX/(ICT X D5 )                  | 1,7.2   | L                                      | 110               |
| 32       | Calcula Coll la Codacion de Dabbit          |                  |           |                   |                                                  |         | Calado de agua a caudal máximo         | 1                 |
| 02       |                                             |                  |           |                   | Ymax = 0,94 x Ds                                 | 0.47    | Calado do agua a cadadi maximo         | m                 |
| 33       |                                             |                  |           | t t               | 1111dX 0,01 X 20                                 | 0,      | Calado de agua a la salida del         |                   |
|          |                                             |                  |           |                   | $h2 = Ymax - Y_2$                                | 0,175   | vertedero lateral.                     | m                 |
| 34<br>35 |                                             |                  |           | 1                 | HZ = THIAX = T2                                  | 0,173   | Calado de agua al ingreso del          | - ""              |
|          |                                             |                  |           |                   | h1 = H - Y 6 h1 = 0,94 x D - Y                   | 0,639   | vertedero lateral.                     | m                 |
|          | Velocidad de aproximación con               | Vmax             | 3,04      | m/s               | III - H - 1 0 III - 0,94 X D - 1                 | 0,039   | Determinación de la longitud           | - 111             |
|          | caudal máximo                               | VIIIdX           | 3,04      | 111/5             | L = 7,55 x Vmax x d x log(h1/h2)                 | 11.62   | del vertedero lateral                  | m                 |
| Dimono   | ionamiento de la transición para giros de l | a tubaría canita | i.        | 1                 | E = 7,55 % VIIIAX % G % log(ITI/IIZ)             | 11,02   | dei vertedero laterar                  |                   |
| 36       | Diámetro o base tubería ingreso             | B o D            | 0,9       |                   |                                                  | 1       | I analted de la translation            | 1                 |
| 30       | Diámetro o base tubería ingreso             | Ds               | 0,9       | m                 | $I = (B-Ds)/(tag\theta)$                         | 3,8     | Longitud de la transición              |                   |
|          |                                             | θ                | 6         | m                 |                                                  | 3,6     |                                        | m                 |
| 07       | Angulo de transición                        | Ð                | ь         | grados            |                                                  |         | Radio de curvatura en la tubería       | ļ                 |
| 37       | Relación diámetro tubería versus radio de   | -/D-             |           |                   | 00                                               |         | Radio de curvatura en la tuberia       |                   |
|          | curvatura recomendado                       | r/Ds             | 2         |                   | r = 2 x Ds                                       | 1       |                                        | ļ                 |
| 38       | Angulo entre el colector principal          |                  |           |                   |                                                  |         | Longitud de la curva                   |                   |
|          | y la tubería sanitaria                      | ω                | #¡REF!    | grados            | $Ic = \omega x (r + Ds/2)/180$                   | _       | 50.00                                  | m                 |
| 39<br>40 | Coeficiente de pérdida por cambio de        |                  |           | 1 1               | 2                                                |         | Pérdida de carga porcambio de          | 1                 |
|          | dirección según el ángulo de giro           | р                | 0         |                   | $hf = p \times V-max-s^2/(2 \times g)$           |         | dirección en el interior del colector  | m                 |
|          |                                             |                  | 1         | 1 1               |                                                  |         | Pendiente en el canal de transición    | 1                 |
|          |                                             |                  |           |                   | $i = (hf + \Delta)/(I + Ic)$                     | 2,32%   | por cambio de dirección y desnivel     | %                 |

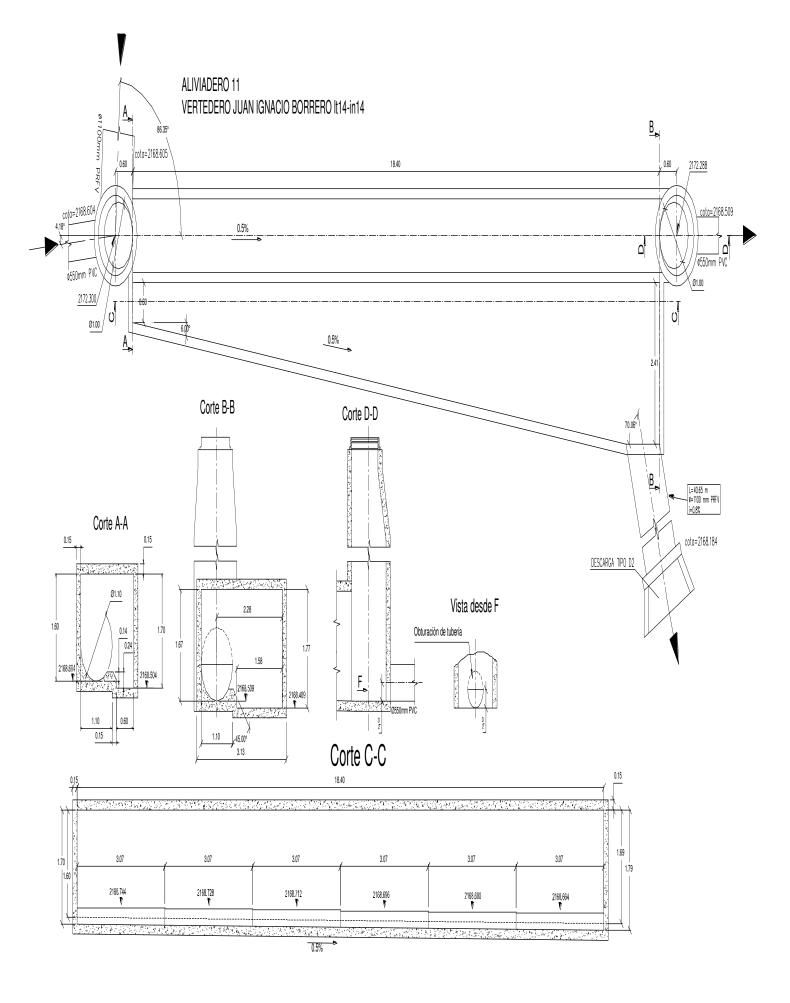


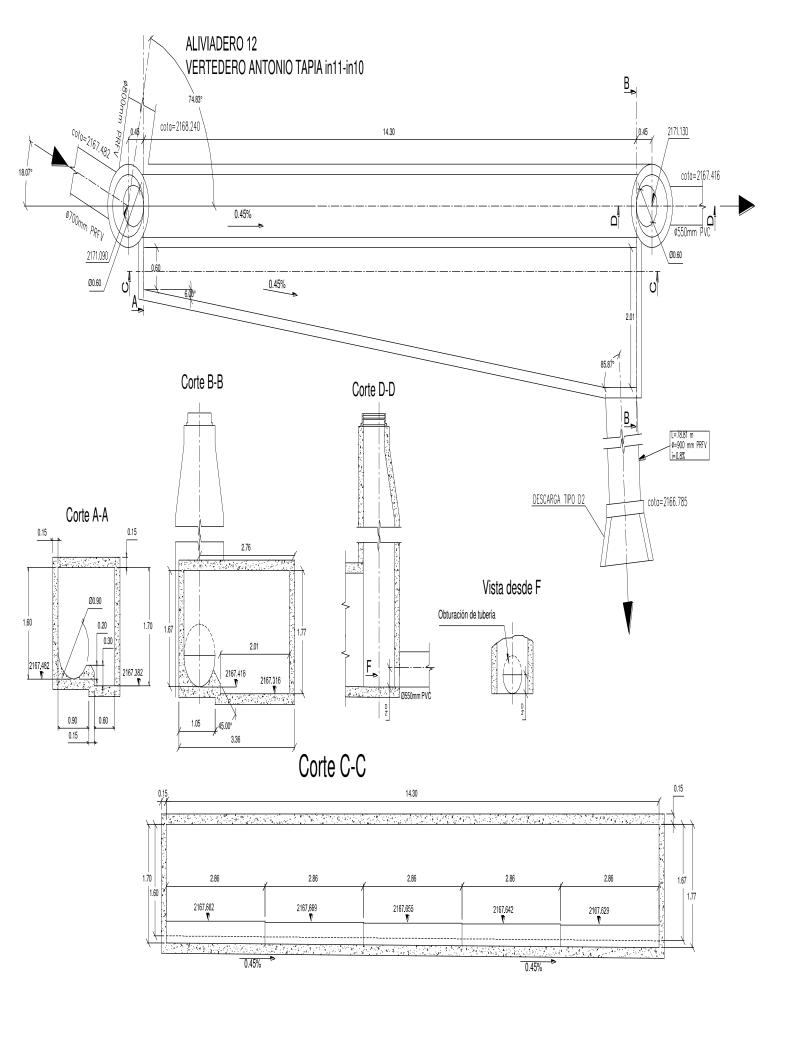



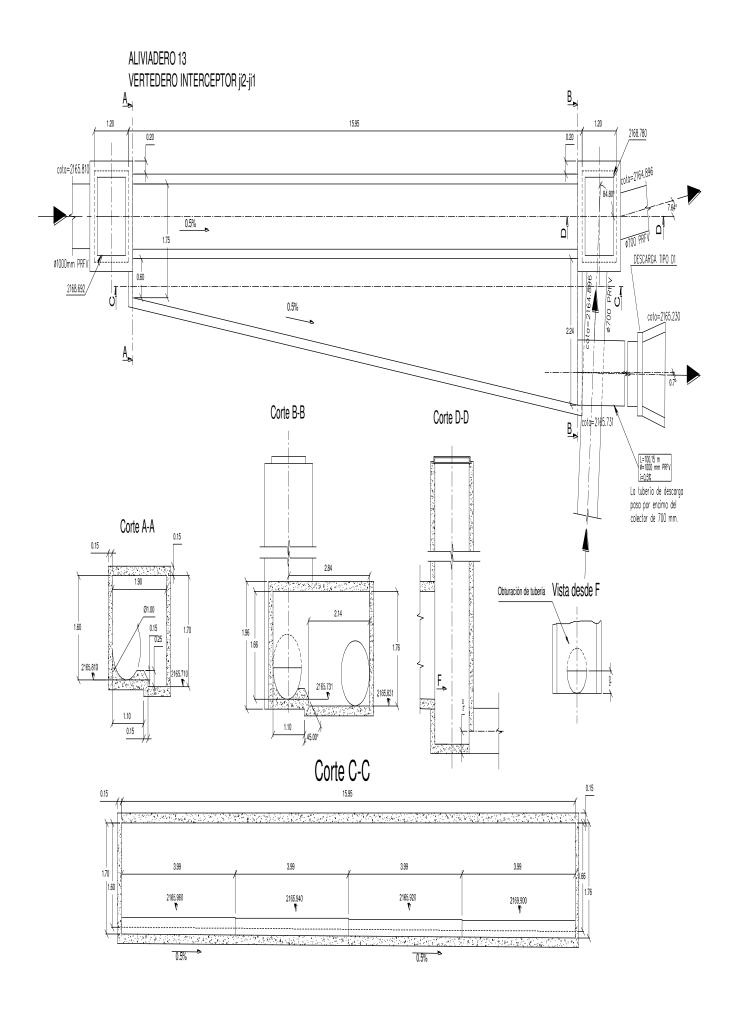



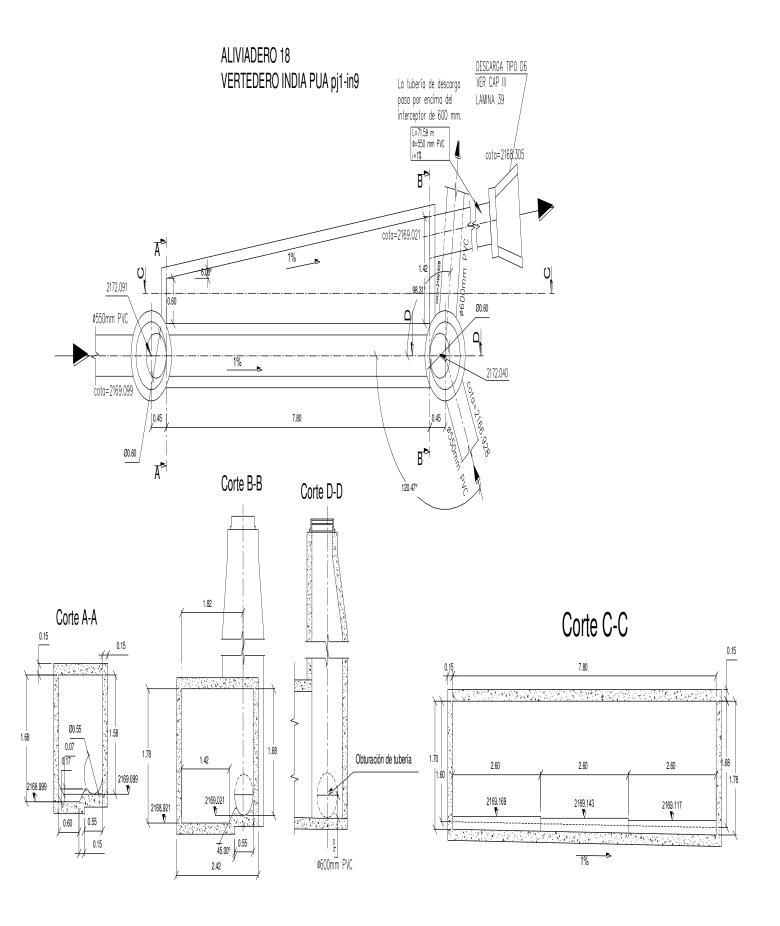



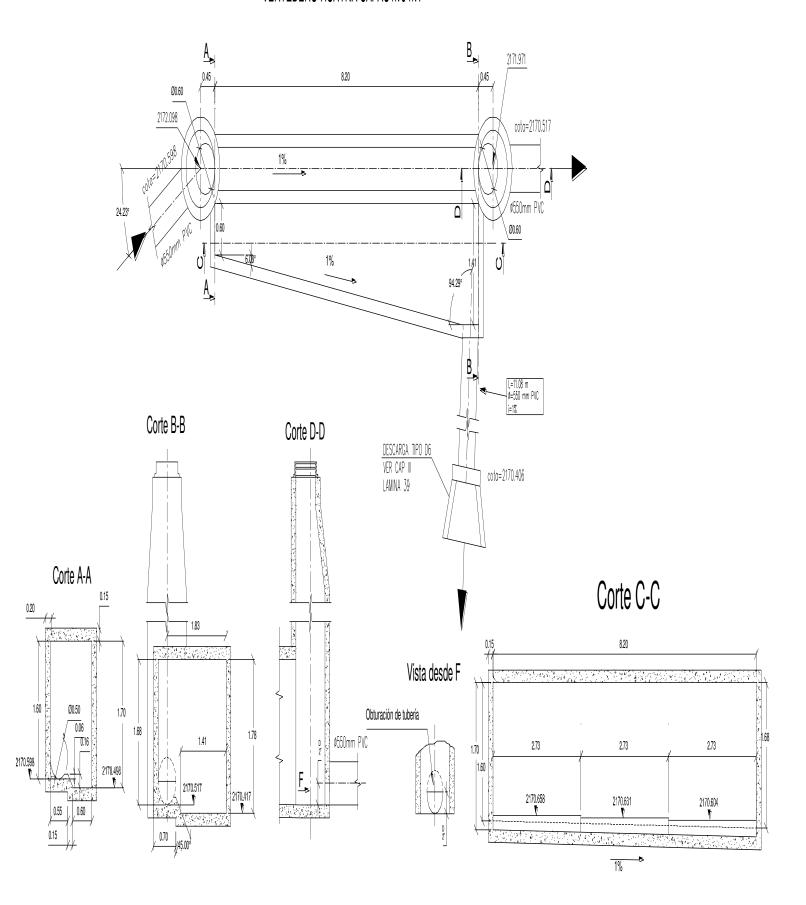












ALIVIADERO 17 VERTEDERO HUAYNA CAPAC nv6-nv7

